運転開始以降に実施した主な改善(1/2)

事象	実施事項	改善対象	実施時期	
応力腐食割れ (SCC) ,摩 耗	蒸気発生器取替	伝熱管振止め金具部摩耗減 肉及び管板拡管部SCC対策 (材料:ニッケル基合金)	第17回定期検査時 (1997~1998年度)	
応力腐食割れ (SCC)	低圧タービンロータ取替	円板翼溝部のSCC対策	第17回定期検査時 (1997~1998年度)	
	1次系配管取替	酸素型SCC(海外事例)及び塩 化物SCC対策 (材料:ステンレス鋼)	第18回定期検査時 (1999年度)~ 第23回定期検査時 (2005年度)	
	原子炉容器上部ふた取替	管台部PWSCC(海外事例)対策 (材料:ニッケル基合金)	第19回定期検査時 (2000年度)	
	炉内構造物取替	バッフルフォーマボルト照 射誘起型SCC(海外事例)対策 (材料:ステンレス鋼)	第22回定期検査時 (2004年度)	
	炉内計装筒母材部等の レーザーピーニング	インコネル600合金溶接部 PWSCC(海外事例)対策 (材料:ニッケル基合金)	第22回定期検査時 (2004年度)	
	冷却材出口管台と冷却材 出口管台セーフエンドと の溶接継手内面クラッ ディング	インコネル600合金溶接部 PWSCC(海外事例)対策 (材料:ニッケル基合金)	第22回定期検査時 (2004年度)	
	加圧器サージ用管台の スプールピース取替	インコネル600合金溶接部 PWSCC(海外事例)対策 (材料:ニッケル基合金)	第23回定期検査時 (2005~2006年度)	

運転開始以降に実施した主な改善(2/2)

事象	実施事項	改善対象	実施時期
腐食	2次系熱交換器取替	第5高圧給水加熱器,湿分分離加 熱器及び第3低圧給水加熱器細管 他の腐食対策	第22回定期検査時 (2004年度) 第23回定期検査時 (2005~2006年度)
	2次系配管取替	腐食対策 (材料:炭素鋼,低合金鋼)	毎定期検査
絶縁低下	発電機固定子コイル 更新	残存耐電圧低下対策	第22回定期検査時 (2004年度)

技術評価:原子炉容器の着目すべき経年劣化事象の例

技術評価例(1):原子炉容器胴部の中性子照射脆化(1/5)

技術評価例(1):原子炉容器胴部の中性子照射脆化(2/5)

関連温度の上昇

- ・監視試験片は原子炉容器内表面 より燃料に近い位置にあり、原 子炉容器内表面の2~3倍程度 の中性子照射を受けているため、 監視試験片により原子炉容器の 将来を予測することができる。
- ・原子炉容器内に全部で6カプセ
 ル挿入
- ・関連温度の予測は、国内原子力
 発電所用鋼材の試験結果を統計
 処理して求められた予測式を用
 いて実施。

技術評価例(1):原子炉容器胴部の中性子照射脆化(3/5)

関連温度の上昇

(注) M (マージン) = 標準偏差 = 12 (母材)

・運転期間の経過に伴う関連温度の上昇は緩やかである。

技術評価例(1):原子炉容器胴部の中性子照射脆化(4/5)

上部棚吸収エネルギーの低下

・上部棚吸収エネルギーの予測は、国内原子力発電所用鋼材の試験結果を 統計処理して求められた予測式を用いて実施。

評価時期	母材の上部棚吸収エネルギ - (J)*
初期値	209
運転開始後26年時点 (平成15年時点)	179
運転開始後60年時点	174

*:原子炉容器内表面から板厚1/4深さにおける値

・上部棚吸収エネルギーの予測値は、JEAC4206((社)日本電気 協会 電気技術規程「原子力発電所用機器に対する破壊靱性の 確認試験方法」)で要求している68J以上を満足している。

技術評価例(1):原子炉容器胴部の中性子照射脆化(5/5)

原子炉容器の脆性破壊に対して最も厳しい条件であるPTS事象に対する評価

加圧熱衝撃(PTS: Pressurized Thermal Shock) 事象とは、

運転中の原子炉容器内に、冷却材喪失事故等によ り非常用炉心冷却水が注入され原子炉容器内の急 激な冷却が起こると、原子炉容器内外間の温度差 による熱応力と内圧による応力により、原子炉容 器内面に大きな引張応力が発生する現象。

K = 応力拡大係数: P T S 評価では原子炉容
 器内面に深さ10mm、長さ60mmの半楕円欠陥
 を想定し、その想定欠陥先端の応力の強さ
 の程度を示す

 $K_c = 破壊靱性値: 材料の脆性破壊抵抗を表す$

・PTS評価の結果、運転開始後60年時点でもK <K cであり、 原子炉容器の健全性は保たれることを確認した。

技術評価例(2):原子炉容器スタッドボルトの疲労割れ

・運転実績に基づく疲労評価を行い、60年の運転を仮定しても 十分に許容値を下回ることを確認

炉内構造物

1次冷却材ポンプ

