資料 1-1

伊方発電所3号機 新規制基準への適合性審査の進捗状況について (耐震性能)

平成26年6月4日 四国電力株式会社

1. 耐震評価の流れ

2. 敷地ごとに震源を特定して策定する地震動

2-1. 解析ケース

- 2-2. 応答スペクトルに基づく地震動評価
- 2-3. 断層モデルを用いた手法による地震動評価
- 3. 震源を特定せず策定する地震動
- 4. 基準地震動の策定

参考:用語集

1. 耐震評価の流れ

以下のフローにより、新規制基準に準拠した基準地震動を策定し、施設の耐震安全性を確認する。

2. 敷地ごとに震源を特定して策定する地震動

【前回ご説明】

【地震のメカニズム】

【敷地ごとに震源を特定して策定する地震動の検討用地震の選定結果】

参考:原子力安全・保安院「原子力発電所の耐震安全性」

地震には、大きく分けて海洋型地震と内陸地殻 内地震があります。 海洋型地震は、2つのプレートの境界面で発生 するプレート境界地震(プレート間地震)と、 沈み込む海洋プレート内部で発生する地震 (海洋プレート(スラブ)内地震)などがあります。 内陸地殻内地震は、プレートのぶつかり合いで、 陸側プレート内部の岩盤が壊れ、ずれることで 生じる地震をいいます。

2-1. 解析ケース 前回ご説明時からの主な変更点

内陸地殼内地震

- ・前回部会では、申請時の54kmを基本としたケースに加え、中央構造線断層帯および別府-万年山断層帯が連動 することを考慮した480kmについても基本ケースとして追加した評価を実施していた。その後、平成26年3月31日の 国コメント「中央構造線の複数の断層モデルのうち、どれを基本モデルとするのか」に対し、審査ガイドの主旨、す なわち「長大な活断層については、断層の長さ(~中略~)等に関する最新の研究成果を十分考慮して、地震規 模や震源断層モデルが設定されていること」を踏まえ、より長い区間が連動するケースを基本ケースとすることが 適切と判断し、連動を想定した480kmを基本ケースとした上で、更なる不確かさを考慮して地震動を評価[平成26 年5月23日審査会合にて説明]
- ・上記の変更に伴い、断層モデル評価に用いる諸元についてもより新しいデータを用いた評価を行うことが適切と 判断し、深部ボーリング「調査結果等を踏まえ、中央構造線断層帯の断層モデル評価に用いる諸元(剛性率)を 4.0×10¹⁰N/m²から 3.31×10¹⁰N/m²に見直して評価を実施[平成26年5月23日審査会合にて説明]

海洋プレート内地震

・平成26年4月9日国コメント「敷地東方に低角の共役断層を想定して地震動評価を行うこと」を踏まえ、不確かさ ケースのひとつとして、敷地東方の低角共役断層を考慮した評価ケースを追加[平成26年5月16日審査会合にて 説明]

プレート間地震

・内陸地殻内地震と同様、審査ガイドの主旨を踏まえ、より新しいデータを用いた評価を行うことが適切と判断し、深 部ボーリング調査により得られた伊方発電所近傍の最新地下構造モデルへ変更して地震動評価を実施[平成26 年5月23日審査会合にて説明]

これらの変更点を反映し、地震動評価を実施

2-1. 解析ケース【内陸地殻内地震の解析ケース】 ①内陸地殻内地震の解析ケース

			不確かさを考慮するパラメータ							
No.	検討ケース	長さ (km)	アスペリ ティ深さ	破壊 開始点	スケーリング則	評価手法 (要素地震)	応力降下量 (短周期レベル)	断層 傾斜角	破壊伝播 速度	アスペリティ 平面位置
_	検討用地震 敷地前面海域の断層群 (中央構造線断層帯)	54	-	_	_	Ι	-	Ι	-	-
0	基本震源モデル 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.0倍	90度	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
1	不確かさ考慮① スケーリング則の不確かさ 中央構造線+別府−万年山	480	断層上端	3ケース	壇・他(2011)	経験的 グリーン関数法	1.0倍	90度	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
2	不確かさ考慮② 評価手法(要素地震)の不確かさ 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	統計的 グリーン関数法	1.0倍	90度	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
3	不確かさ考慮③ 応力降下量の不確かさ 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.5倍	90度	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
4	不確かさ考慮④ 地質境界断層の知見考慮 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.0倍	北傾斜	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
5	不確かさ考慮⑤ 角度のばらつきを考慮 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.0倍	南傾斜	0. 72Vs	地質調査結果を基に 敷地への影響も 考慮して配置
6	不確かさ考慮⑥ 破壊伝播速度の不確かさ 中央構造線+別府−万年山	480	断層上端	東破壊	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.0倍	90度	1. OVs	地質調査結果を基に 敷地への影響も 考慮して配置
7	不確かさ考慮⑦ アスペリティの平面位置の不確かさ 中央構造線+別府−万年山	480	断層上端	3ケース	Murotani F & M 3.1MPa Sa/S=21.5%	経験的 グリーン関数法	1.0倍	90度	0. 72Vs	<u>敷地正面のジョグに</u> 配置

OMurotani: Murotani et al.(2010), F & M: Fujii and Matsu'ura(2000), Sa/S=21.5%: アスペリティ面積比21.5% O破壊開始点3ケースは、断層西下端、中央下端、東下端。破壊伝播速度ケースは敷地に向かってくるケース。

:予め基本震源モデルに織り込む不確かさ

:不確かさを考慮するパラメータ

平成26年3月31日国コメント「中央構造線の複数の断層モデルのうち、どれを基本モデルとするのか」を踏まえ、 断層長さ480kmを基本ケースとし(表中赤枠)、解析ケースを再整理。[平成26年5月23日審査会合にて説明] また、深部ボーリング 調査結果等を踏まえ、中央構造線断層帯の剛性率を4.0×10¹⁰N/m²から3.31×10¹⁰N/m² に変更(全ケース)。[平成26年5月23日審査会合にて説明]

2-1. 解析ケース【内陸地殻内地震の解析ケース】 解析モデル例:基本,不確かさ②(要素地震),不確かさ③(応力降下量),不確かさ⑥(破壊伝播速度)

6

			震源モデルの設定条件					
No.	検討ケース	地震規模	断層面の位置	破壞開始点	アスペリティの位置	傾斜角	備考	
-	検討用地震	M6. 9	1649年の地震の 震央位置	- *	- *	- *		
	1649年安芸・伊予の地震					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0	基本震源モデル	M7. 0	敷地真下	破壊開始点	海洋マントル上端に	90°		
-	想定スラブ内地震	既往最大		2個所	1111日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1			
-	芸予地震の知見を反映	M7. O	おいまて	破壊開始点	2001年芸予地震の知見		2001年芸予地震の再現	
1	芸予地震モデル	既往最大	<u></u>	3個所	2001芸予	2001芸予 55 [°] ₩	モテルをM7.0にスケー ルアップ	
2	アスペリティ深さの不確かさ	M7. O	勒地直下	破壊開始点	アスペリティを断層	٥٥°		
2	アスペリティ上端モデル	既往最大	<u>苏地共</u> 下	2個所	端)に配置	50		
3	地震規模の不確かさ	M7 2	載地直下	破壊開始点	海洋マントル上端に	٥٥°		
0	M7.2モデル	m7. Z	放地共下	2個所	配置	30		
4	共役断層を考慮 敷地東方の低角共役断層	M7.4	敷地東方	破壞開始点 2個所	海洋マントル上端に 配置	30 [°] (低角共役断層)		

※:検討用地震の選定では断層最短距離を用いた距離減衰式で影響評価を行ったため想定していない

:不確かさを考慮するパラメータ

:検討ケースとして追加

平成26年4月9日国コメント「敷地東方に低角の共役断層を想定して地震動評価を行うこと」を踏まえ、不確 かさケースのひとつとして、敷地東方の共役断層(低角正断層)を考慮する。 [平成26年5月16日審査会合にて説明]

2-1. 解析ケース【海洋プレート内地震の解析ケース】 解析モデル例:④敷地東方の低角共役断層 断層モデル

当該地域で通常発生している高角断層と共役の 断層面を持つ低角断層(傾斜角30度)を敷地東方 に想定する。

地震規模はM7.4とする。

断層の走向はプレート上面の等深線に沿う方向 (N30°E)とする。

Ne			震	/# #		
NO.	使訂ケーム	地震規模	断層面の位置	破壞開始点	アスペリティの位置	偏考
	検討用地震	NO 0	内閣府検討会に	_	_	
_	南海トラフの巨大地震 M9. (内閣府検討会による断層モデル)	M9. U	よる断層モデル	*	*	
0	基本震源モデル 南海トラフの巨大地震 (内閣府検討会による断層モデル)	M9. O	内閣府検討会に よる断層モデル	内閣府検討会による 破壊開始点 :1箇所	陸側ケース	
1	SMGA位置の不確かさ 直下SMGA追加ケース	M9. O	内閣府検討会に よる断層モデル	内閣府検討会による 破壊開始点 :1箇所	陸側ケース + 敷地直下に配置	

:予め基本震源モデルに織り込む不確かさ

:不確かさを考慮するパラメータ

※:検討用地震の選定では断層最短距離を用いた距離減衰式で影響評価を行ったため想定していない

深部ボーリング調査により得られた伊方発電所近傍の最新地下構造モデルへ変更(全ケース)。 [平成26年5月23日審査会合にて説明]

敷地に最も近い日向灘の強震動生成域(SMGA)を敷地近傍に追加配置した。

内閣府検討会の基本ケース(緑格子:SMGA)

- 3. 南海域のSMGAはプレートの傾斜がきつくなる前の領域に配置されており、形状がフラットで面積が広いのに対し、 日向灘域のSMGAは傾斜がきつくなり始めた領域に位置しており、プレートの湾曲を考慮した形状となっている。
- 4. 以上のことから発電所直下に配置するSMGAは、日向灘域のSMGAを参照して設定することとし、安全側の評価 となるよう陸側ケースに追加して配置した(右図)。

2-1. 解析ケース【プレート間地震の解析ケース】 深部ボーリング調査による地盤モデル

荷揚 ┃ 3 号炉

O深部ボーリング調査によると、従来 モデルと比較し、Vsはほぼ同等もし くはやや大きめ、Vp、密度、Q値は やや小さめである。

			厉	本調査 えいし1	結果を ミモデノ	IL		3号	耐震バ (従来=	ックチェック Eデル)	アモデル	深度(m)
孔B 习	FLA		Vp (km/s)	Vs (km/s)	$\begin{array}{c} \rho \ ({ m g/cm3}) \end{array}$	Q値		Vp (km/s)	Vs (km/s)	$_{\rm (g/cm3)}^{\rho}$	Q値	0
			5.3	2.6	3.0	50		5.3	2.6	3. 0	50	5
							10 10					10
												130
	塩基性片: 、 泥質片岩:	岩主体部と 主体部の境界						5.5	2.7	3. 0	50	160
			5.5	2.7	3. 0	50						180
							200					200
300												300
		350					350					350
												500
J	620		4.7	2.6	2.7	100	本調査に					620
		800					₈₀₀ よる物性 値を反映	57	n o	2.0	100	800
	1, 280		5.2	3.0	2.7	100		ə. <i>1</i>	2.0	5.0	190	1,280
		1, 500					1, 500					1,500
2, 000	2, 000	2,000	5.5	3.3	2.7	220	2,000 2,000					2,000
			6.1	3.5	2.7	230		6.1	3.5	3. 0	230	16,000

2-2. 応答スペクトルに基づく地震動評価

地震動評価結果例:(内陸地殻内地震 不確かさ?) アスペリティ敷地正面)

2-2. 応答スペクトルに基づく地震動評価 地震動評価結果(海洋プレート内地震)

1000 100 Ð 9, 10 (cm/s) 度 逶 1 ----基準地震動Ss-1V ——基本(M7.0 Xeq=48km) ——芸予(M7.0 Xeq=49km) ——上端(M7.0 Xeq=46km) ——東方共役断層(M7.4 Xeq=48km) 0.1 0.01 0.1 1 10 周期(秒)

水平方向

2-2. 応答スペクトルに基づく地震動評価 地震動評価結果(プレート間地震)

から、第一次報告と同じく、南海トラフの巨大地震の検討に用いる経験的手法のパラメータMw は8.3 と設定した。』

2-3. 断層モデルを用いた手法による地震動評価(内陸地殻内地震) 地震動評価結果例:(不確かさ③ 応力降下量1.5倍)経験的グリーン関数法

2-3. 断層モデルを用いた手法による地震動評価(内陸地殻内地震) 地震動評価結果例:(不確かさ⑥ 破壊伝播速度) 経験的グリーン関数法

16

2-3. 断層モデルを用いた手法による地震動評価(海洋プレート内地震) 地震動評価結果例:(④敷地東方の低角共役断層)

破壞開始点 北下端

NS方向

EW方向

2-3. 断層モデルを用いた手法による地震動評価(プレート間地震) 地震動評価結果(プレート間地震)

〇陸側ケース

18

3. 震源を特定せず策定する地震動 検討概要「震源を特定せず策定する地震動」検討フロー

審査ガイドを踏まえ,全16地震について,「地域性」(Mw6.5以上),「観測記録の適切性」(Mw6.5未満)の観点から網羅的に分類・分析し伊方発電所における「震源を特定せず策定する地震動」の地震動レベルを設定する。

16地震(国の審査ガイドより)

No	地震名	日時	規模
1	2008年岩手・宮城内陸地震	2008/06/14,08:43	Mw6.9
2	2000年鳥取県西部地震	2000/10/06, 13:30	Mw6.6
3	2011年長野県北部地震	2011/03/12,03:59	Mw6.2
4	1997年3月鹿児島県北西部地震	1997/03/26, 17:31	Mw6.1
5	2003年宮城県北部地震	2003/07/26,07:13	Mw6.1
6	1996年宮城県北部(鬼首)地震	1996/08/11,03:12	Mw6.0
7	1997年5月鹿児島県北西部地震	1997/05/13, 14:38	Mw6.0
8	1998年岩手県内陸北部地震	1998/09/03, 16:58	Mw5.9
9	2011年静岡県東部地震	2011/03/15, 22:31	Mw5.9
10	1997年山口県北部地震	1997/06/25, 18:50	Mw5.8
11	2011年茨城県北部地震	2011/03/19, 18:56	Mw5.8
12	2013年栃木県北部地震	2013/02/25, 16:23	Mw5.8
13	2004北海道留萌支庁南部地震	2004/12/14, 14:56	Mw5.7
14	2005年福岡県西方沖地震の最大余震	2005/04/20,06:11	Mw5.4
15	2012年茨城県北部地震	2012/03/10, 02:25	Mw5.2
16	2011年和歌山県北部地震	2011/07/05, 19:18	Mw5.0

3. 震源を特定せず策定する地震動

審査ガイドにおけるMw6.5以上の地震に関する記載

「基準地震動及び耐震設計方針に係る審査ガイド」より抜粋

「事前に活断層の存在が指摘されていなかった地域において発生し、地表付近に一部の痕跡が確認された地震」は、震源断層がほぼ地震発生層の厚さ全体に広がっているものの、地表地震断層としてその全容を表すまでには至っていない地震(震源の規模が推定できない地震(Mw6.5以上の地震))であり、孤立した長さの短い活断層による地震が相当する。なお、活断層や地表地震断層の出現要因の可能性として、地域によって活断層の成熟度が異なること、上部に軟岩や火山岩、堆積層が厚く分布する場合や地質体の違い等の地域差があることが考えられる。このことを踏まえ、観測記録収集対象の地震としては、以下の地震を個別に検討する必要がある。

① 孤立した長さの短い活断層による地震
 ② 活断層の密度が少なく活動度が低いと考えられる地域で発生した地震
 ③ 上部に軟岩や火山岩、堆積層が厚く分布する地域で発生した地震

No	地震名	日時	規模
1	2008年岩手・宮城内陸地震	2008/06/14, 08:43	Mw6.9
2	2000年鳥取県西部地震	2000/10/06, 13:30	Mw6.6

表-1 収集対象となる内陸地殻内の地震の例

→審査ガイドにおけるMw6.5 以上の地震に関する記載を踏まえ、まず伊方発電所 立地地点の地域性を整理した上で、2008年岩手・宮城内陸地震および2000年鳥取 県西部地震の震源域との「地域差」について検討する。

3. 震源を特定せず策定する地震動 岩手・宮城内陸地震震源域の地域性と伊方発電所との地域差

岩手・宮城内陸地震震源域には「孤立した長さの短い活断層」が認められるとともに新第三紀以降 の火山岩、堆積岩が厚く「上部に軟岩や火山岩、堆積層が厚く分布する地域」に該当するなど、深部 ボーリング調査によって堅硬かつ緻密な結晶片岩が少なくとも地下2kmまで連続することを確認し ている伊方発電所との「地域差」が顕著であり、観測記録収集対象外とする。

項目	岩手·宮城内陸地震震源域	伊方発電所立地地点
活断層の密度・活動度	多数の活断層が発達	活動度の高い中央構造線断層帯で 広域な歪み解放を効率良く行っている地域
活断層の変位センス	逆断層が卓越	横ずれ断層が卓越 (若干の正断層成分を含む)
微小地震の発生深さ	~20km程度	∼ 12km
応力場	東西圧縮の逆断層型	東西圧縮の横ずれ型
孤立した長さの短い活断層	断層変位地形の報告あり	変位地形・リニアメントなし
地質	新第三紀以降の 火山岩、堆積岩が厚く分布	堅硬かつ緻密な結晶片岩が 少なくとも地下2kmまで連続
第四紀火山との位置関係	近接	離隔あり
地震地体構造区分	東北日本弧外帯と内帯の境界	西南日本弧外带

YONDEN

3. 震源を特定せず策定する地震動 鳥取県西部地震震源域の地域性と伊方発電所との地域差

鳥取県西部地震震源域は、「孤立した短い活断層」と対応する可能性のあるリニアメント(推定活断層)の報告があるとともに未成熟な活断層が分布して「活断層の密度が少なく活動度が低いと考えられる地域」に該当するなど、 西南日本を縦断する長大活断層である中央構造線断層帯で広域な歪み解放を効率よく行っている地域に位置する伊方発電所との「地域差」が顕著であり、観測記録収集対象外とする。

項目	鳥取県西部地震震源域	伊方発電所立地地点
活断層の密度・活動度	活断層が非常に少なく 活動度も低い(未成熟)	活動度の高い中央構造線断層帯で 広域な歪み解放を効率良く行っている地域
活断層の変位センス	横ずれ断層が卓越	横ずれ断層が卓越 (若干の正断層成分を含む)
微小地震の発生深さ	~20km程度	∼ 12km
応力場	東西圧縮の横ずれ型	東西圧縮の横ずれ型
孤立した長さの短い活断層	リニアメント(推定活断層) の報告あり	変位地形・リニアメントなし
地質	花崗岩が分布	堅硬かつ緻密な結晶片岩が 少なくとも地下2kmまで連続
第四紀火山との位置関係	近接	離隔あり
地震地体構造区分	中国山地·瀬戸内海	西南日本弧外带

3. 震源を特定せず策定する地震動 Mw6.5未満の地震について抽出した観測記録(まとめ)

〇観測記録を整理した結果、敷地に及ぼす影響が大きいと考えられるものとして、以下の記録が抽出された。

3. 震源を特定せず策定する地震動 Mw6.5未満の地震についてのまとめ

		2004年 北海道留萌支庁南部地震	2013年 栃木県北部地震	2011年 和歌山県北部地震	2011年 茨城県北部地震	2011年 長野県北部地震
	使用モデル	・佐藤他(2013)の地盤モデ ル	・地表及び地中観測記録 に基づく地盤同定モデル	・地表及び地中観測記録 に基づく地盤同定モデル	・地表及び地中観測記録 に基づく地盤同定モデル	・地盤情報が乏しくモデル が構築できない
地盤モデ	既往の知見と の整合性	・微動探査による地盤デー タと整合 ・知見で指摘されている特 性(非線形性)にを考慮	 Kik-net地盤データと整合しない ・知見で指摘されている特性(減衰、方位依存)の影響が不明 	 Kik-net地盤データと整合しない ・知見で指摘されている特性(非線形性)の影響が不明 	 ・伝達関数及びKiK-net地 盤データと整合しない ・知見で指摘されている特 性(非線形性)の影響が 不明 	・地盤モデルに関する既 往の知見がない
íL		0	×	×	×	×
	更なる知見収 集・検討事項	-	・地盤モデルの改良 ・知見で指摘されている特 性に係るデータの取得と 影響度合いの評価	・地盤モデルの改良 ・知見で指摘されている特 性に係るデータの取得と 影響度合いの評価	・地盤モデルの改良 ・知見で指摘されている特 性に係るデータの取得と 影響度合いの評価	 ・地質調査、微動探査等による地盤情報の取得
	解析手法	・非線形性を考慮した等価 線形解析	・線形解析	・線形解析	·線形解析	・地盤モデルが構築できな いため、解析できない
はぎとり	精度	・観測事実(非線形性によ るサイト増幅の低下)と 整合	・はぎとり解析手法の適用 性が不明	・はぎとり解析手法の適用 性が不明	・はぎとり解析手法の適用 性が不明	・はぎとり解析手法の適用 性が不明
解 析		0	×	×	×	×
	更なる知見収 集・検討事項	_	・地表及び地中観測記録 の再現解析	・地表及び地中観測記録 の再現解析	・地表及び地中観測記録 の再現解析	・地表観測記録の再現解 析
結果の信頼性		0	×	×	×	×

以上を踏まえ、「震源を特定せず策定する地震動」は、現行の加藤ほか(2004)に基づき敷地における地盤物性を考慮して設定した応 答スペクトルに加えて、佐藤ほか(2013)による2004年北海道留萌支庁南部地震の解放基盤波を考慮の対象とする。

3. 震源を特定せず策定する地震動 佐藤ほか(2013)による2004年北海道留萌支庁南部地震の解放基盤波

YONDEN

3. 震源を特定せず策定する地震動 解析に用いる地盤モデル

○佐藤ほか(2013)の地盤モデルをもとに、GL-6mまで非線形性を考慮し、GL-6m以深の減衰定数を3%とした基盤 地震動を評価し、佐藤ほか(2013)と比較する。

	非線形特性	減衰定数h (初期値)	層厚 H(m)	密度	S波速度 Vs(m/s)
	砂	0.02	0.5	1.9	200
	礫混じり砂	0.03	0.5	2.0	200
	礫1	0.02	1	2.0	200
	礫2	0.01	1	2.0	290
	風化砂岩1	0.01	1	2.0	290
	風化砂岩2	0.01	1	2.0	370
	風化砂岩2	0.01	1	2.0	400
	—	0. 03	1	2.0	473
	—	0.03	3	2.0	549
	—	0.03	2	2.0	549
	—	0.03	1	2.0	549
\neg	—	0. 03	0.5	2.0	549
	—	0.03	2.5	2.0	549
	_	0.03	7	2.06	604
	_	0.03	18	2.06	653
	_	0.03	17	2.13	938

等価線形解析に用いる地盤モデル

減衰定数3% として評価

3. 震源を特定せず策定する地震動 基盤地震動の評価結果(水平方向)

○佐藤ほか(2013)の地盤モデルをもとに、GL-6m以深の減衰定数を3%として基盤地震動を評価した結果、最大加速度は609cm/s²となり、佐藤ほか(2013)による基盤地震動(585cm/s²)と比較してやや大きく評価された。
 ○応答スペクトルは、佐藤ほか(2013)による応答スペクトルとほぼ同程度となっている。

3. 震源を特定せず策定する地震動

<u> 鉛直方向の基盤地震動の再評価(概要)</u>

○佐藤ほか(2013)に、付録として事例紹介していた鉛直方向の基盤地震動の評価結果は、物理探査学会(2013年 10月)時点でのモデルに基づいていたが、表層部分のPS検層結果について笹谷ほか(2008)の位相速度と差異が みられたことから、最表層に重点をおいた再測定を物理探査学会発表後に実施した。

○再測定の結果、表層の6m以浅のP波速度は、佐藤ほか(2013)において鉛直方向の基盤地震動を評価した時のモデルとは異なっていたため、P波速度を再設定した地盤モデルを用いて基盤地震動を再評価した。
○なお、再測定の結果、S波速度は佐藤ほか(2013)における地盤モデルとほぼ同様のため変更していない。

3. 震源を特定せず策定する地震動 評価結果(鉛直方向)

○表層部に重点をおいたPS検層の再測定の結果を踏まえ、体積弾性率一定として鉛直方向の基盤地震動を評価した 結果、最大加速度は306cm/s²であり、従来の評価結果(296cm/s²)と比較してやや大きく評価された。

3. 震源を特定せず策定する地震動 「震源を特定せず策定する地震動」の策定

○2004年北海道留萌支庁南部地震の基盤地震動についての検討結果を踏まえ、水平方向については、最大加速度 609cm/s²、鉛直方向については、最大加速度306cm/s²の基盤地震動を震源を特定せず策定する地震動に反映 する。

○震源を特定せず策定する地震動は、原子力発電所の耐震性に求められる保守性を勘案して、2004年北海道留萌 支庁南部地震の基盤地震動(水平方向:609cm/s²、鉛直方向:306cm/s²)の加速度時刻歴波形を水平方向 620cm/s²、鉛直方向320cm/s²に基準化(位相特性を変えずに振幅特性のみ変更)した地震動として考慮する。

加速度時刻歷波形

3. 震源を特定せず策定する地震動 「震源を特定せず策定する地震動」の策定

4. 基準地震動の策定【応答スペクトルに基づく手法による基準地震動Ss-1】 応答スペクトルに基づく手法による基準地震動Ss-1

応答スペクトル法による地震動評価結果を図に示す。 [図に示した基準地震動Ss-1のスペクトルは平成25年7月8日申請時より変更なし]

○設計用応答スペクトル「基準地震動Ss-1」の模擬地震波

- 模擬地震波は応答スペクトルに適合する周波数-振動特性と一様乱数の位相を もつ正弦波の重ね合わせによって作成する
- 振幅包絡線の経時変化についてはNoda et al.(2002)に基づき設定

4. 基準地震動の策定 【応答スペクトルに基づく手法による基準地震動Ss-1】 模擬地震波の作成

○設計用模擬地震波(Ss-1H, Ss-1V)の時刻歴波形(加速度)

※設計用応答スペクトルに適合するよう一様乱数の位相をもつ正弦波の重ね合わせより作成

加速度(cm/s²)

4. 基準地震動の策定 【断層モデルを用いた手法による基準地震動Ss-2】 基準地震動Ss-2の策定(内陸地殻内地震)

内陸地殻内地震の断層モデル解析結果を基準地震動Ss-1と比較する。Ss-1を超える地震動の中から、3波を基準地震動Ss-2として設定する。選定結果を次ページに示す。

NS方向

YONDEN

EW方向

UD方向

35

4. 基準地震動の策定 【断層モデルを用いた手法による基準地震動Ss-2】 基準地震動Ss-2

○Ss-2-1(応力降下量1.5倍·西破壞) 500 500 500 486 216 (cm/s^2) (cm/s^2) (cm/s^2) 0 470 -500 -500 -500 120_(s) 20 40 60 80 100 120_(s) 20 40 60 80 100 20 40 60 80 100 120_(s) 0 0 0 ○Ss-2-2(応力降下量1.5倍·前面中央破壊) 500 500 500 447 (cm/s^2) (Cm/S^2) (Cm/S^2) 194 -500 -500 -500 40 100 120_(s) 20 40 60 80 20 60 80 0 100 120_(s) 0 0 20 40 60 80 100 120 (s) ○Ss-2-3(破壊伝播速度·東破壊) 500 500 500 287 (CM/S^2) (CM/S^2) $(\mathrm{cm}/\mathrm{S}^2)$ 163 -500 -500 -500 20 40 60 80 100 120_(s) 20 40 60 80 100 120_(s) 20 40 60 80 100 120_(s) 0 0 0 P R cm/9000 cm1000 2000 R cm1000 000 000 ,000 20, 1000 1000 1000 100 100 100 (cm/s) (cm/s) (s/w) 10 度 度 賊 阓 ➡基準地震動Ss-1H ■基準地震動Ss-1V 0, 基準地震動Ss-2-1NS(応力降下量1.5倍 西破壊) -基準地震動Ss-2-1EW(応力降下量1.5倍 西破壊) -基準地震動Ss-2-2NS(応力降下量1.5倍 中央破壊) -基準地震動Ss-2-2EW(応力降下量1.5倍 中央破壊) ——基準地震動Ss-2-2UD(応力降下量1.5倍 中央破壊) -基準地震動Ss-2-3NS(破壊伝播速度 東破壊) -基準地震動Ss-2-3EW(破壊伝播速度 東破壊) ——基準地震動Ss-2-3UD(破壊伝播速度 東破壊) 0.1 0.1 0.1 0.01 0.1 1 10 0.1 10 0. 01 0.1 1 10 周期(秒) 周期(秒) 周期(秒) NS方向 EW方向 UD方向 36

4. 基準地震動の策定 【断層モデルを用いた手法による基準地震動Ss-2】 基準地震動Ss-2の策定(海洋プレート内地震)

海洋プレート内地震の断層モデル解析結果を基準地震動Ss-1と比較する。全ケースとも基準地震動 Ss-1を下回ることから基準地震動としては選定しない。

NS方向

UD方向

4. 基準地震動の策定 【断層モデルを用いた手法による基準地震動Ss-2】 基準地震動Ss-2の策定(プレート間地震)

プレート間地震の断層モデル解析結果を基準地震動Ss-1と比較する。Ss-1を下まわることから,基準 地震動Ss-2としては選定しない。

4. 基準地震動の策定 【震源を特定せず策定する地震動による基準地震動Ss-3】 基準地震動Ss-3の策定

震源を特定せず策定する地震動による基準地震動Ss-3として,留萌支庁南部の地震の 基盤波(最大加速度水平620ガル,鉛直320ガル)を選定する。

4. 基準地震動の策定

基準地震動Ssの最大加速度振幅

基準地震動Ssの最大加速度振幅

	基準地震動Ss					
	応答スペクトルに		水平動	Ss-1H	570	
	基つく手法による 基準地震動Ss	設計用模擬地震波	鉛直動	Ss-1V	330	
			水平動NS	Ss-2-1NS	486	
	断層モデルを用いた 手法による 基準地震動Ss	敷地前面海域の断層群(中央構造線断層帯) 応力降下量1.5倍・西破壊	水平動EW	Ss-2-1EW	470	
震酒を特定			鉛直動UD	Ss-2-1UD	216	
して策定す			水平動NS	Ss-2-2NS	447	
る地辰勤		敷地前面海域の断層群(中央構造線断層帯) 応力降下量1.5倍・前面中央破壊	水平動EW	Ss-2-2EW	415	
			鉛直動UD	Ss-2-2UD	194	
			水平動NS	Ss-2-3NS	287	
		敷地前面海域の断層群(中央構造線断層帯) 破壊伝播速度	水平動EW	Ss-2-3EW	294	
			鉛直動UD	Ss-2-3UD	163	
震源を特定せず策定する地震動		2004年北海道留萌支庁南部の地震	水平動	Ss−3H	620	
		基盤地震動の基準化波	鉛直動	Ss-3V	320	

YONDEN

審査会合における主なコメント

【震源を特定して策定する地震動 – 中央構造線断層帯】

- ■54km等の部分破壊を考慮しても、断層長さを480kmとした評価が保守的 であることを示すこと。
- ■断層破壊開始点を、アスペリティ下端ではなく、断層下端としていることの 保守性を示すこと。
- ■地震規模について、他の知見(Fujii & Matsuura)を用いたケースを検討 すること。

【震源を特定せず策定する地震動】

■鳥取県西部地震の発生地域と、伊方発電所周辺地域の違いを、中央構造 線断層帯の応力解放範囲の評価も含め、再整理すること。

これらのコメントを踏まえ、更なる検討を行う

【参考】用語集

アスペリティ:地震断層面のうち、通常は強く固着し、ある時急激にずれて地震波を出す領域
強震動生成域(SMGA):断層面内で、応力降下量が特に大きく、強震動を出す領域。アスペリティと
同じように使われる。
M(マグニチュード):地震が発するエネルギーの大きさを対数で表した指標値。地震規模を直接測定
する手段が無く、なんらかの方法で推定するしかないため、いくつかの定義が
Mw(モーメントマグニチュード):地震規模を物理的に定義するために提唱された地震モーメントMo(断層の面積、
断層の平均すべり量、断層周辺の岩盤の変形しやすさの指標である剛性率の積)
を用いて、従来のマグニチュードの数値と合致するように換算して得られるマグ
$= F_{\circ}$ $\log Mo = 1.5 Mw + 16.1$
Mj(気象庁マグニチュート):気象庁が地震を観測した際に発表するマクニチュード。
Vs:地震によって発生する横波(S波)の速度
Vp:地震によって発生する縦波(P波)の速度
Vr:断曽面の破環か進んで行く速度(破環伝播速度)
応力降下重: 地震によって回着した断増面から解放されるエネルキー重
栓映的クリーン 関剱法:地 晨 期を評価9 る于法の一つで、小規 模地 晨観測記嫁から、大規模地晨期の
次形を宣戍しし作り山9万法
就計的グリーン関数法:地展期を評価9る于法の一つで、観測記録の代わりに小さな地展による活化で してしてめに味剤度決略も作成し、これも日と会わせてすきた地震による低化で
してスエNIに時刻症波形を1F成し、てれを止し合わせて入さな地長による活れ た計算する大法
と前身りの刀広 おだえいし、二海の洋艇層を単位とたる区間に公けたまの
ビゾノノト、一連の近め眉を単位となる区間に力けたもの ジョガ・洋断層トレースは、屈曲、公岐、ステップなどの形状を有する。このような
ノョノ・冶岡信ドレーへは、油曲、ガ峡、ヘナクノなどの形状を有する。このような 非直線性の構造をジョグという
が直線にの構造でノョノという。 ジョガけ断届破陸の停止域であり、ジョガからけ強い地震動け生じたいと考
ノコノは岡眉吸板の仔ェダミのク、ノコノがらは強い地度動は上しないとう えられている
副性率・断層破壊を生じる地部分の種なの指標
破壊伝播速度・断層の破壊が伝わる速さ
■ 距離減衰式・地震の採れや震度の大きさと震源からの距離との関係を示したもの