平成 1 7 年度

「伊方発電所・新燃料搬入安全対策書」 (要約)

平成17年6月

愛 媛 県

目 次

1	概	要	1
2	搬入物	件	2
3	輸送物の安全	≧対策	3
4	事故発生の未	₹然防止対策	5
5	法令に基づく	、輸送時の安全確認	8
6	安 全 評	価	9
7	結	論	10
8	経	過	11
9	資	料	12
	○資料 1	新燃料輸送関係法令	
	○資料 2	燃料集合体概要図(例)	
	○資料 3	燃料棒の構造図(例)	
	○資料 4	輸送容器(例)	
	○資料 5	燃料集合体梱包状況図(例)	
	○資料 6	輸送物トラック積載図(例)	
	○資料 7	輸送隊列編成概要図(例)	
	○資料 8	輸送物積付要領図(例)	
	○資料 9	伊方発電所への新燃料搬入状況	
	○資料10	新燃料の性状等(例)	

1 概 要

(1) 四国電力㈱は、伊方1号機用新燃料30体、伊方2号機用新燃料36体及び伊方3号機用新燃料40体を搬入するため、平成17年度には、1回の新燃料輸送を行う計画である。

新燃料は専用の輸送容器53個に入れ、成型加工工場(三菱原子燃料㈱本社製作所(繊県珊瑚栗州) 及び原子燃料工業㈱熊取事業所(城﨑県駅町))から船積地まで陸上輸送し、同地から伊方発電所 専用岸壁まで海上輸送する計画である。

- (2) 伊方発電所への新燃料の搬入については、平成17年3月末までに35回実施されているが、放射線事故発生の例はない。
- (3) 新燃料搬入の安全対策については、関係法令に基づく規制や安全確認等を受けるとともに、 従来と同様に事故発生の未然防止対策が講じられている。

2 搬 入 物 件

(1) 物品・数量

号機別	集合体数	輸送容器数	濃 縮 度
1号機用	30 体 【うち、ガドリニア入り燃料体数 8体】	15 個	4.8%
2号機用	36 体 【うち、ガドリニア入り燃料体数 16体】	18 個	4.8%
3号機用	40 体 【うち、ガドリニア入り燃料体数 16体】	20 個	4.8%

[資料2、3参照]

(2) 輸 送 容 器

輸送容器は、その設計、製作について、経済産業省による承認を得たものを使用する。

輸 送 容 器 諸 元

		MFC - 1 型	NFI- 型
型	式	(三菱原子燃料糊製燃料輸送用)	(原子燃料工業期製燃料輸送用)
幅		約1.2	約1.1
外形寸法	高さ	約1.3	約1.1
(m)	長さ	約5.4	約5.2
	空 容 器	約2.8	約2.4
重量	燃料集合体(2体)	約1.2~1.4	約1.2~1.4
(トン)	計	約4.0~4.2	約3.6~3.8

[資料4、5参照]

3 輸送物の安全対策

今回搬入する輸送物は、「核燃料物質等の工場又は事業所の外における運搬に関する規則」に規定する「A型核分裂性輸送物」の適用を受けるもので、成型加工工場出発前に原子力安全基盤機構から輸送物が法令に定める技術上の基準に適合していることの確認を受ける。

(1) 新燃料

今回使用する新燃料は、[新燃料の仕様]に示すとおり、A型核分裂性輸送物の設計条件を満足していることについて、輸送開始前までに原子力安全基盤機構の承認を受ける。

(2) 輸送容器

今回使用する輸送容器は、経済産業省の承認を受けており、以下のような安全性能を満足する。

ア 未臨界性

輸送容器に収納される新燃料(2体)は、一定の間隔が保たれ、さらに燃料保持部は中性 子をよく吸収するボロンが多く含まれたステンレス鋼で構成されているため、臨界に達する 可能性はない。

イ 放射線遮へい性

輸送物の予想最高線量当量率は下表のとおり法令上の限度よりも十分低く、安全である。

	+別と自由力にのける」心致向。	<u> </u>
項目	予想最高線量当量率	法令上の線量当量率の限界
容器表面	約0.03ミリシーヘルト/時	2ミリシーベルト / 時以下
容器表面から 1メートル離 れたところ	約20マイクロシーヘルト/時	100マイクロシーヘルト / 時以下

輸送容器外における予想最高線量当量率

ウ 密封性

輸送容器は、9mの高さからのコンクリート面等剛体への落下や、800 、30分の 火災においても燃料の健全性を保つ構造となっている。

新燃料の仕様

	MFC	C - 1型
項 目 	今回の輸送物仕様	輸送物の設計条件
種 類	新燃料集合体 二酸化ウラン燃料およびガドリニア 入り二酸化ウラン燃料	新燃料集合体 二酸化ウラン燃料およびガドリニア 入り二酸化ウラン燃料
二酸化 ウラン 燃料重量 (kg)	1号:約 924 (ガト・リニア入り:約 923) 2号:約 924 (ガト・リニア入り:約 923 または約 921 3号:約 1,066 (ガト・リニア入り:約 1,064)	1号 940以下 (ガドリニア入り:937以下) 2号 940以下 (ガドリニア入り:937以下) 3号: 1,080以下 (ガドリニア入り:1,077以下)
放射能強度 (ベクレル)	1号:約 1.26×10 ¹¹ 2号:約 1.26×10 ¹¹ 3号:約 1.46×10 ¹¹	1.54×10 ¹¹ 以下
濃縮度 (%)	約4.8	5.0 以下

	N F I - V型		
項 目	今回の輸送物仕様	輸送物の設計条件	
種類	新燃料集合体 二酸化ウラン燃料および ガドリニア入り二酸化ウラン燃料	新燃料集合体 二酸化ウラン燃料および ガドリニア入り二酸化ウラン燃料	
二酸化 ウラン 燃料重量 (kg)	1号:約 901 (ガドリニア入り:約 900) 2号:約 901 〔ガドリニア入り:約 900〕 または 約 899〕 3号:約 1,067 (ガドリニア入り:約 1,066)	1号 930以下 (ガドリニア入り: 930以下) 2号 930以下 (ガドリニア入り: 930以下) 3号: 1,090以下 (ガドリニア入り:1,090以下)	
放射能強度 (ベクレル)	1号:約 1.26×10 ¹¹ 2号:約 1.26×10 ¹¹ 3号:約 1.46×10 ¹¹	1号:1.32×10 ¹¹ 以下 2号:1.32×10 ¹¹ 以下 3号:1.54×10 ¹¹ 以下	
濃縮度 (%)	約4.8	5.0 以下	

4 事故発生の未然防止対策

(1) 陸 上 輸 送

ア 陸上輸送にあたっては、次の事項等を厳守し安全対策に万全を期する。

- (ア) 輸送車両の始業前点検の実施
- (イ) 熟練した運転者、作業員及び監督者の選任
- (ウ) 放射線教育も含めた事前教育訓練の実施
- (I) 放射線管理者及び放射性物質運送経験者の同行又は配置
- (オ) 輸送物のトラックへの確実な固縛、標識等
- (カ) 放射線測定器具、化学消火器等応急措置用機材の携行
- (キ) 岸壁荷役作業時安全管理の徹底

事前点検の厳重実施及び作業区域への関係者以外の立入禁止

作業開始前の荷役可否の慎重な判断

輸送物吊上げ前の各部の安全確認

マーキング等による輸送物吊上げ高さ9m以下の確保

積付作業時の地方運輸局長または日本海事検定協会の指示による輸送物の強固な保定及び同機関による積付検査の受検

船長等の荷役作業への立会

(ク) 放射線管理の徹底

作業中における放射線管理の徹底

輸送物の線量当量率等の測定による安全確認

測定時点	測定場所	内 容
陸揚げ後	伊方発電所	線量当量率、表面の放射性物質の密度

輸送物積載後の車両及び輸送船の線量当量率の測定による安全確認 作業完了後、作業場並びに使用資機材に汚染がないことの確認

イ 緊急時対策

万一事故が発生した場合には、以下の応急措置を講ずるとともに、状況に応じて輸送本部を事故対策組織に切り替え、関係機関との緊密な連絡のもとに適切な措置を講じ、事故の拡大防止に努める。

- (ア) 事故の拡大防止に必要な措置を速やかに講じるとともに、警察署等関係者に通報
- (イ) 縄張り、標識等による立入禁止区域の設定及び見張人による監視
- (ウ) 火災の場合は、携行の消火器により直ちに初期消火にあたる等、事故の状況に適した応 急措置
- (I) 線量当量率の測定
- (オ) 負傷者、被ばく者の救護
- (カ) 汚染の除去及び汚染拡大の防止

(2) 海 上 輸 送

ア 海上輸送にあたっては、輸送物の特性を考慮し、新燃料輸送に十分な実績を有し、他船と の衝突等を仮想しても、構造的に安全性の高い、船底が二重底で、乾舷甲板下の船側部分に サイドタンクを有する船体構造の、新燃料輸送時には他の貨物を混載しない輸送船を起用す る。また、十分余裕のある航海計画をたてるとともに、次のとおり安全設備等の安全運航対策を実施することにより、事故の未然防止をはかる。

イ 輸送船の安全設備

(ア) 火災対策設備

他船との衝突等による船外火災あるいは船内火災等に備えて、消火ポンプ、消火栓等を 設置している。

(イ) 輸送物固縛装置

船倉には、輸送中の船舶の揺れ、あるいは衝突等の際に輸送物の移動、転倒等を防止できるよう、輸送物を固縛する装置を設けている。

(ウ) 給電設備

発電機を2台設け、1台が故障した場合にも十分給電できるようになっている。

(I) 航海計器、通信設備

レーダー(2台)

自動衝突予防援助装置

オートパイロット

船位測定装置

音響測深機

無線電話装置

(オ) 放射線測定器具等

ガンマ線測定用可搬式測定器

中性子線測定用可搬式測定器

表面の放射性物質等の密度を測定することが可能な可搬式測定器

個人用外部被ばく線量測定器

汚染防護服

フィルタ付防護マスク

除染用具

- ウ 要員の確保ならびに教育・訓練の徹底
 - (ア) 熟練した船長、優良な船員を選任し、事前の教育訓練を十分実施
- (イ) 放射線管理者の乗船
- (ウ) 船長あるいは船長を補佐する操船有資格者のいずれかが運航予定海域を熟知し、新燃料 運送経験を有すること
- エ 海上輸送中の安全管理の徹底
- (ア) 出港に際して、気象図、天気予報及び大型船舶の出入港の動向を確認
- (イ) 操船及び監視は、常時2名以上
- (ウ) 船舶電話による輸送船と輸送本部の定期的な連絡
- (I) 放射線測定器具、化学消火器等の応急措置用機材の携行
- (オ) 避難港は、関係官庁の指示指導を得て選択
- オ 異常気象対策
- (ア) 出港予定日の3日前から気象図を作成するとともに、出港時点の気象情報により、輸送が不可能となることが予想できる場合は、海上保安部とも相談のうえ出港を延期
- (イ) 視界が2海里以下の場合、船首に見張り人を設置
- (ウ) 異常気象に遭遇した場合、最寄りの海上保安官署の指示を求め、適切な措置を実施
- カ 船舶の機能保全対策
- (ア) 航行の安全を確保するため、出港前24時間以内の船体、機関、装備品等の点検実施
- (イ) 万一、航行中に故障が生じた場合、本船乗組員により修理可能なものは、早急に修理

- し、修理不能の場合は、引き船により曳航
- (ウ) 放射線管理の徹底

船倉出入口への関係者以外立入禁止標識の掲示 個人用外部被ばく線量測定器等による被ばく管理の徹底 輸送物および船舶の放射線測定の徹底 陸揚げ作業完了後、船内に汚染がないことの確認

キ 緊急時対策

万一事故が発生した場合には、輸送船の「災害対策緊急措置手引書」に基づき、以下の応急措置により的確に対応するとともに、状況に応じて輸送本部を事故対策組織に切り替え、 事故の拡大防止に努める。

- (ア) 事故の拡大防止につとめ、最寄りの海上保安官署等に通報
- (イ) 船内に立入制限区域を新たに設ける時は、その旨の周知と表示、必要に応じてロープ等による区分けを行う。
- (ウ) 火災の発生に際しては、初期消火につとめ、延焼を防止
- (I) 座礁、衝突等の事故時には、輸送物の管理に万全を期すとともに、サルベージ船を待機

(3) 輸 送 業 者

新燃料の輸送作業については、輸送作業を安全かつ円滑に実施するため、核燃料輸送物の取扱いに熟練し、豊富な輸送実績のある業者を選定する。

5 法令に基づく輸送時の安全確認

新燃料の輸送に対しては、関係法令に基づき、輸送の計画段階から、国あるいは原子力安全基盤機構または国の認定機関の安全確認等を受けることとなっているが、今年度の輸送にあたっては、次のような安全確認等を受けることとなっている。

また、最寄りの海上保安本部等へ運送計画等を届け出ることとなっている。

法令に基づく主な安全確認事項

	/ ないまま				
No	確認事項	確認内容	確認者	確認時期	
1	核燃料輸送物 設計承認	輸送物の設計が「核燃料物質等の工場又は事務所の外における運搬に関する規則」に定める技術上の基準に適合していることを確認する。	経済産業大臣	平成16年3月 承 認 済 平成15年4月 承 認 済	
2	容器承認	輸送容器が上記の設計承認に従って 製作されていることを確認する。	経済産業大臣	平成16年5月 承 認 済 平成16年7月 承 認 済	
З	核燃料物質等 運搬物確認	設計承認、容器承認及び収納する新燃料の性状の確認を行うとともに成型加工工場において、発送前検査結果の確認をし、輸送物が所定の基準に適合していることを確認する。	原子力安全 基盤機構	発 送 前	
4	放射性輸送物 運送計画書 安全確認	海上輸送に関し、船舶、輸送物、輸送物の積載方法及び運送時期等を含んだ運送計画が適当か否か、確認する。	国土交通大臣	発 送 前	
5	危険物積付検査	輸送物の積付にあたって輸送物の確認を行うとともに、線量当量率、積載方法等について検査する。	発航港管轄地方運 輸局長 又は(社) 日本海事検定協会	輸送物積付時	

6 安全評価

(1) 陸 上 輸 送

ア 衝 突

新燃料輸送容器は、9mの落下の衝撃においても、燃料棒の破損等を起こさない性能を有するもので、実際の陸上輸送衝突事故時には、車体等の変形によりエネルギーが吸収されるので、9m落下時の衝撃に比べて小さく、燃料棒からの放射性物質放出等はないと考えられる。

イ火災

陸上輸送にあたっては、輸送物積載車両及び前後の車両に消火器を配備するので、火災 発生の際も十分処置できる。また、輸送容器は800 、30分の火災においても燃料棒の密 封性が保たれ、放射性物質の放出が生じることはないと考えられる。

(2) 海 上 輸 送

ア 海難事故時の輸送物の安全性

新燃料輸送容器は、9mの落下の衝撃においても、燃料棒の破損等を起こさない性能を有するとともに、火災時においても燃料棒の密封性が確保されるもので、実際の海上輸送衝突事故時には、多方面から検討した結果、船舶の速度は、9m落下時に比べ小さいと思われ、さらに衝突時の船舶の塑性変形等によりエネルギーが吸収されることから、9m落下の条件下における衝突よりもかなり緩和され、海上輸送時の衝突、座礁、火災等においても容器の大幅な変形、燃料棒の破損等の重大な影響はないと考えられる。

イ 海難事故時の輸送船の安全性

船舶が事故により沈没する可能性は少なく、事故防止対策に万全の措置をとることにより、燃料が海没する可能性は更に低いと推定される。

7 結 論

以上の諸点については、次のとおり要約される。

- (1) 今年度の新燃料の搬入は、これまでに行われている搬入の方法と基本的に異なるところはない。
- (2) 輸送物は、関係法令に基づく措置が講じられているため、臨界になることはなく、放射線及び放射能は、法令等に定められた限度値を下回るよう措置されている。
- (3) 輸送容器は、輸送中の衝突、火災等の事故時をも想定した関係法令に定める基準を満足するように、設計、製作されている。
- (4) 輸送にあたっては、事故の未然防止対策、事故時の対策、異常気象対策及び船舶の機能保全対策等、安全対策に十分配慮がなされている。

また、法令に基づく国あるいは原子力安全基盤機構または国の認定機関による安全確認等が行われる。

8 経 過

- (1) 平成17年3月28日四国電力㈱から新燃料輸送の安全対策について資料提出
- (2) 同年4月8日伊方原子力発電所環境調査技術連絡会において検討
- (3) 同年 4 月20日伊方原子力発電所環境安全管理委員会技術専門部会において検討
- (4) 同年4月20日国(経済産業省、国土交通省)へ意見照会