一伊方発電所3号機の耐震安全性評価

目次

I 章 伊方発電所の概要と評価の流れ ************************************	•	•	1
Ⅱ章 安全上重要な建物・構築物の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	6
1.基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	7
2. 原子炉建屋等の地震応答解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	13
〈地震応答解析モデルに係る検討〉	•	•	34
[1] 地震応答解析モデルの変更点に関する検討	•	•	35
[2]外周コンクリート壁ドーム部の剛性評価に関する検討	•	•	44
[3]コンクリートの実強度を用いた場合の剛性評価への影響検討			47
[4]鉄筋コンクリート造部の減衰定数を5%としていることの検討 ・・・・・・・・・・・・・・・			50
3. 原子炉建屋等の耐震安全性評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			60
Ⅲ章 安全上重要な機器・配管系の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			75
			76
2. 床応答スペクトル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	99
3. 減衰定数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			101
4. 応答倍率法による評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•		103
5. 評価基準値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			107
6. 機器・配管系の耐震安全性評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			109
7. 今後の予定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			124
【構造AサブWGにおける主な審議事項等】 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			126
[1]水平方向および鉛直方向の地震力の組合せ方法 ・・・・・・・・・・・・・・・・・・・・・・・			127
[2]鉛直方向床応答スペクトルの拡幅率の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			129
			137
			139
			143
			147
			156
			100
添けー2 「伊方発雷所3号機 制御棒插入性の評価における応答倍率法の適用」			
添付-3 「伊方発電所3号機 応答倍率法による評価について」			

|章 伊方発電所の概要と評価の流れ

伊方発電所の概要(施設諸元)

			1号機	2号機	3号機
	原子炉熱出力		約1,650MW	同左	約2,660MW
	定格電気	出力	566,000kW	同左	890,000kW
	送電電圧、	回線数	18万7千ボ	ルト、4回線	50万ボルト、2回線
		形式	加圧水型軽水炉 (PWR) (2ループ)	同左	加圧水型軽水炉 (PWR) (3ループ)
原子炉	后六六里	北緯	33°29′29″	33°29′26″	33°29′27″
	炉心似直	東経	132°18′31″	132°18′31″	132°18′39″
		種類	低濃縮二酸化ウラン	同左	同左
Link desi	全口	フラン装荷量	約49t	同左	約 74t
深然不计	燃料 集合体数(燃料仕様)		121体(14×14燃料)	同左	157 体 (17×17燃料)
	制御棒会	クラスタ設置本数	33体	同左	48 体
復水器		方式	深層取水・水中放流	同左	同左
冷却海水	ž	动海水量	約38m ³ /秒	同左	約65m ³ /秒
	原子炉	設置(変更)許可	昭和47年11月29日	昭和52年3月30日	昭和61年5月26日
		着工	昭和48年6月15日	昭和53年2月21日	昭和61年11月1日
主要経緯	1	初臨界	昭和52年1月29日	昭和56年7月31日	平成6年2月23日
	的	業運転開始	昭和52年9月30日	昭和57年3月19日	平成6年12月15日
灵蒸		皆生器取替工事 置変更許可	平成8年7月10日	平成12年5月30日	—
累積発電	累積発電電力量(平成21年3月末現在)		122,728×10 ³ MWh	110,579×10 ³ MWh	97,052×10 ³ MWh
累積発電	官時間(平成2	1年3月末現在)	約21.9万時間	約19.7万時間	約10.8万時間
累積設備	利用率(平成	21年3月末現在)	78.5%	82.4%	87.0%

伊方発電所の概要(全体配置)

新耐震指針に照らした耐震安全性評価の流れ

||章 安全上重要な建物・構築物の耐震安全性評価

1. 基本方針

2. 原子炉建屋等の地震応答解析モデル

3. 原子炉建屋等の耐震安全性評価結果

||章 安全上重要な建物・構築物の耐震安全性評価

1. 基本方針

2. 原子炉建屋等の地震応答解析モデル

3. 原子炉建屋等の耐震安全性評価結果

伊方発電所 配置図

評価方針(評価フロー)

基準地震動Ssに対する安全上重要な施設の安全機能の保持の観点から評価を実施する。

基準地震動Ssの概要(加速度応答スペクトル)

水平方向

基準地震動Ss(加速度時刻歴波形と加速度応答スペクトル)

基準地震動Ss-1(応答スペクトルに基づく手法)

水平方向

鉛直方向

基準地震動Ss(加速度時刻歴波形と加速度応答スペクトル)

基準地震動Ss-2(断層モデルを用いた手法)

NS方向

||章 安全上重要な建物・構築物の耐震安全性評価

1. 基本方針

2. 原子炉建屋等の地震応答解析モデル

3. 原子炉建屋等の耐震安全性評価結果

原子炉建屋の概要

 \bigtriangledown

構 造:鉄筋コンクリート造および鉄骨造(一部鉄骨鉄筋コンクリート造) 基 礎:厚さ約9.0m(一部7.4m),直接岩盤上に設置 平面形状:62.2m(EW方向)×79.9m(NS方向) 高 さ:基礎版底面から約83m 建屋構成:原子炉格納施設(原子炉格納容器,外周コンクリート壁及び内部コンクリート),原子炉周辺 補機棟及び燃料取扱棟を同一基礎版上に設置

	<mark>設計基準強度</mark> Fc (N/mm ²)	ヤング係数 E (N/mm ²)	せん断弾性係数 G (N/mm²)	ポアソン比 V	単位体積重量 * Y (kN/m ³)						
コンクリート	26.5 (270kg/cm²)	2.34×10⁴	9.75×10³	0.2	24						
鉄筋		SD345相当 (SD35)									
鋼材	SS400, SM490A相当 (SS41, SM50A)										

※鉄筋コンクリートの値を示す。

原子炉建屋の地震応答解析モデル(水平方向)

○多軸多質点系スウェイ・ロッキングモデル

・設計時のモデルを基に、最新の規格・基準等を反映したモデル

○建屋底面の地盤ばね(水平・回転)

・JEAG4601-1991による近似地盤ばね

○建屋の減衰

・モード減衰(ひずみエネルギー比例	型)
・減衰定数	鉄筋コンクリート造部	:5%
	鉄骨造部	:2%
	百 二 后	•1%

原 子炉格 閷容 器	:1%
蒸気発生器	:3%

○非線形特性(JEAG4601-1991)

・鉄筋コンクリート造耐震壁の非線形復元力特性 ・鉄骨造(筋かい、ラーメン架構)の非線形復元力特性 ・基礎の浮上りによる地盤の回転ばねの幾何学的非線形

原子炉建屋の地震応答解析モデル諸元(水平方向)

	新上	新上六里	府且	****	せん断	断面積	断面2次モ	ニーメント		桥上	质上六型	桥目	****	せん断断面積	責	断面2次モ	ーメント
部位	員品番号	貝 只 にし Fl + (m)	月 (†)	部份	(m	1 ²)	(n	n ⁴)	部位	員品番号	月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<2011月<20	月 重 (†)	部約番号	(m ²)		(m	1 ⁴)
			(1)		EW方向	NS方向	EW方向	NS方向				(1)		EW方向NS方	向	EW方向	NS方向
	1	83.359	203.20	1	22	.97	657	7.69		30	31.5	210.70	30	1.32			3.74
	2	80.232	545.34	2	28	9.21	3595	5.91		31	29.2218	97.30	31	1.40			3.98
	3	76.685	834.35	3	36	6.14	9251	.97	S/G	32	25.9721	302.40	32	1.40			3.98
	4	72.036	1256.42	4	46	6.52	17978	3.09		33	24.1058	32.20	33	10.60		5	4.34
	5	66.585	1730.56	5	58	3.70	28428	28428.73		34	23.16	122.90			-		
	6	60.689	2347.23	6	71	.85	37597	7.23		35	80.71	15.60	35	0.365			9.84
0/0	7	56.1	1828.58	7	82	.25	42767	7.91		36	78.03	120.50	36	1.00		21	1.4
0/5	8	51.45	1918.37	8	85	.68	44454	1.90		37	70.7	203.40	37	1.365		51	1.0
	9	46.8	2560.46	9	89	.10	46134	1.12		38	60.689	216.00	38	2.80		112	2.0
	10	39.55	3285.46	10	94	.41	48726	6.30	0.04	39	56.1	946.50	39	2.80		112	2.0
	11	32.3	3512.46	11	77	77.83		.78	C/V	40	50.02	365.70	40	2.80		112	2.0
	12	24.0	2929.18	12	77	77.83		.78		41	42.86	314.80	41	2.80		112	2.0
	13	17.0	1815.73	13	204	.90	95688	8.66		42	35.7	361.80	42	2.80		112	2.0
	45	16.2	5491.73	45	377	.21	143275	5.33		43	29.85	270.60	43	2.80		112	2.0
	14	54.8	990.90	14	0.44487	0.01941	-	-		44	24.0	316.90	44	2.80		112	2.0
	15	46.8	1018.50	15	0.70049	0.04262	-	-	基礎	48	6.7	111082.17		•	-		
	16	46.8	3156.55	16	69.94	88.95	6265.0	24950.0	基礎	費量	EW	方向		3.5161×	< 10 ⁷	′(t • m²)	
RE/B	17	39.5	3985.64	17	90.09	92.13	9372.0	27002.0	回東	置性	NS	方向	$5.4615 \times 10^7 (t \cdot m^2)$				
FH/B	18	36.8	4034.80	18	134.25	134.66	16068.0	75050.0	1	彩 貿	t 量	251689.18					
	19	32.3	19578.34	19	409.07	401.38	179468.0	170230.0				•					
	20	24.0	26376.79	20	424.28	409.04	198162.0	208969.0			1.5.1		部材			NO-	
	21	17.0	24835.59	21	435.01	425.51	212939.0	237159.0		\searrow	157	足数	番号	EW方问		NSJ	기미
	22	38.0	1255.08	22	56.38	57.79	207.88	351.15			水平ばね	(kN/m)	50	8.97×10 ⁶		7.593	× 10 ⁷
	23	32.3	5346.64	23	100	.22	3523.9	8190.6	0/S	-RE/B	水平ばね	(kN/m)	51	1.19×10 ⁷		1.03	× 10 ⁸
1/0	24	24.0	7725.31	24	131	.15	4802.0	10662.0			水平ばね	(kN/m)	52	1.12×10 ⁷		9.82	× 10 ⁷
	25	17.0	7543.70	25	133	.12	15838.3	18577.7	I/C	-0/S	水平ばね	(kN/m)	53	2.83×10 ⁸		2.83	× 10 ⁸
	26	41.7	99.50	26	2	.00	9.5	59	., c		水平ばね	(kN/m)	54	2.94×10 ⁶		2.943	×10 ⁶
0.00	27	38.4	276.60	27	2	.00	9.5	59			水平ばね	(kN/m)	55	1.03×10 ⁷		2.80	× 10 ⁷
S/G	28	35.6083	99.80	28	1	.85	6.9	98	5/0	a−I/C	水平ばね	(kN/m)	56	1.04×10 ⁷		5.61	×10 ⁶
2	29	33.9104	126.90	29	1	.32	3.7	74			回転ばね(kN∙m/rad)	57	4.89×10 ⁷		3.43	× 10 ⁷

原子炉建屋の地震応答解析モデル(鉛直方向)

○多軸多質点系モデル

○建屋底面の地盤ばね(鉛直)
 ・JEAG4601-1991による近似地盤ばね

○建屋の減衰

・モード減衰(ひずみエネルギー比例	型)
・減衰定数	鉄筋コンクリート造部	:5%
	鉄骨造部	:2%
	原子炉格納容器	:1%
	蒸気発生器	:1%

原子炉建屋の地震応答解析モデル諸元(鉛直方向)

部位	質点 番号	質点位置 EL+(m)	質 量 (t)	部材 番号	軸断面積 (m ²)		部位	質点 番号	質点位置 EL+(m)	質 量 (t)	部材 番号	軸断面積 (m ²)	
	1	83.359	203.20	1	0.85			26	41.7	99.50	26	4.00	
Γ	2	80.232	545.34	2	8.88			27	38.4	276.60	27	4.00	
	3	76.685	834.35	3	19.70			28	35.6083	99.80	28	3.70	
	4	72.036	1256.42	4	42.44			29	33.9104	126.90	29	2.64	
	5	66.585	1730.56	5	115.48		S/G	30	31.5	210.70	30	2.64	
	6	60.689	2347.23	6	143.70			31	29.2218	97.30	31	2.80	
0/6	7	56.1	1828.58	7	164.50			32	25.9721	302.40	32	2.80	
0/3	8	51.45	1918.37	8	171.35			33	24.1058	32.20	33	21.21	
	9	46.8	2560.46	9	178.19			34	23.16	122.90		-	
	10	39.55	3285.46	10	188.82			35	80.71	15.60	35	0.034	
-	11	32.3	3512.46	11	155.65			36	78.03	120.50	36	0.352	
	12	24.0	2929.18	12	155.65			37	70.7	203.40	37	1.798	
	13	17.0	1815.73	13	409.80			38	60.689	216.00	38	5.60	
	45	16.2	5491.73	45	754.42	C/V	C/V	с /v	39	56.1	946.50	39	5.60
	14	54.8	990.90	14	1.51		C/V	40	50.02	365.70	40	5.60	
	15	46.8	1018.50	15	2.13			41	42.86	314.80	41	5.60	
	16	46.8	3156.55	16	160.53			42	35.7	361.80	42	5.60	
RE/B	17	39.5	3985.64	17	253.89			43	29.85	270.60	43	5.60	
FH/B	18	36.8	4034.80	18	339.87			44	24.0	316.90	44	5.60	
	19	32.3	19578.34	19	740.31		基礎	48	6.7	111082.17		-	
	20	24.0	26376.79	20	762.48		総	資 11	〔量	251689.18		-	
	21	17.0	24835.59	21	796.60								
	22	38.0	1255.08	22	97.18	-							
I/C	23 24	32.3 24.0	5346.64 7725.31	23 24	200.43 262.29				ばね	定数	部材 番号	UD方向	
-		47.0	7720.01		202.20		0/0	1/0	수가 ㅋㅋ ㅋㅋ ㅋㅋ	(I-NI /			

原子炉建屋の地盤ばね定数および減衰係数

地盤ばね定数および減衰係数

			原子炉建屋						
			EW方向	NS方向	UD方向				
水平	ばね定数	(kN/m)	3.646×10 ⁹	3.573×10 ⁹					
ばね	減衰係数	(kN·s/m)	3.040×10 ⁷	2.919×10 ⁷	_				
回転	ばね定数	(kN∙m/rad)	3.966×10 ¹²	5.318×10 ¹²					
ばね	減衰係数	(kN·m·s/rad)	1.933×10 ⁹	4.041×10 ⁹	_				
鉛直	ばね定数	(kN/m)			4.539×10 ⁹				
ばね	減衰係数	(kN·s/m)			5.208×10 ⁷				

地盤ばね

HONDEN

原子炉建屋の固有値解析結果

	EW	方向	NS:	方向	UD		
次数	固有周期 (s)固有振動数 (Hz)		固有周期固有振動数(s)(Hz)		<mark>固有周期</mark> (s)	固有振動数 (Hz)	備考
1	0.214	4.68	0.567	1.76	0.083	12.07	全体1次(EW,UD)
2	0.161	6.23	0.236	4.23	0.063	16.00	
3	0.141	7.10	0.195	5.12	0.060	16.77	全体1次(NS)
4	0.123	8.10	0.160	6.23	0.056	17.80	
5	0.105	9.50	0.112	8.94	0.045	22.13	
6	0.072	13.86	0.103	9.75	0.042	23.86	
7	0.069	14.50	0.069	14.41	0.042	24.03	
8	0.056	17.74	0.061	16.44	0.031	32.71	

原子炉建屋の刺激関数図(EW方向:1~8次)

原子炉建屋の刺激関数図(NS方向:1~8次)

原子炉建屋の刺激関数図(UD方向:1~8次)

構 造:鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造) 基 礎:厚さ約3.0m, 直接岩盤上に設置 平面形状:73.4m(EW方向)×79.9m(NS方向) 高 さ:約46m

	<mark>設計基準強度</mark> Fc (N/mm ²)	ヤング係数 E (N/mm ²)	せん断弾性係数 G (N/mm ²)	ポアソン比 V	単位体積重量 [※] Ƴ (kN/m³)						
コンクリート	26.5 (270kg/cm²)	2.34×10⁴	9.75×10³	0.2	24						
鉄筋		SD345相当 (SD35)									
鋼材	SS400, SM490A相当 (SS41, SM50A)										

※鉄筋コンクリートの値を示す。

原子炉補助建屋の地震応答解析モデル(水平方向)とモデル諸元

水平方向

・基礎の浮上りによる地盤の回転ばねの幾何学的非線形

	_	_	-
72	11	T	
7	┯	л	ш

質点 番号	質点位置 EL+(m)	質 量 (t)	質量回転慣性 (t・m ²)		部材	せん断断面積 (m ²)		断面2次モーメント (m ⁴)	
			EW方向	NS方向	Щ	EW方向	NS方向	EW方向	NS方向
1	39.5	7443.36	5.4309×10 ⁵	4.5332×10 ⁵	1	99.3	72.3	10530.0	4930.0
2	32.3	24072.30	1.0651×10 ⁷	1.1651×10 ⁷	2	228.8	215.4	111550.0	141330.0
3	24.0	28234.44	1.3683×10 ⁷	1.4179×10 ⁷	3	342.5	291.2	160040.0	224440.0
4	17.0	39165.06	1.7609×10 ⁷	2.0861×10 ⁷	4	366.0	326.2	152610.0	196730.0
5	10.0	32566.88	1.3269×10 ⁷	1.6469×10 ⁷	5	408.3	464.5	190530.0	259700.0
6	10.3	3799.27	1.1232×10 ⁵	5.2971×10 ⁴	6	30.9	-*	850.0	2.5
11 (基礎)	1.12	72326.59	3.4936×10 ⁷	3.5809×10 ⁷	7	114.3	78.6	5820.0	970.0
総質量		207607.90				※:耐震壁と	:して扱っていない	いためせん断剛性は	考慮していない。

HONDEN

原子炉補助建屋の地震応答解析モデル(鉛直方向)とモデル諸元

2軸多質点系モデル 建屋底面の地盤ばね(鉛直) JEAG4601-1991による近似地盤ばね 建屋の減衰 モード減衰(ひずみエネルギー比例型)

 【鉄筋コンクリート造部:5%]

A.4	_	_	<u> </u>
971		T	
Т.		л	ш

質点 質点位置 番号 EL+(m)		質 量 (t)	部材 番号	断面積 (m ²)		
1	39.5	7443.36	1	201.04		
2	32.3	24072.30	2	551.51		
3	24.0	28234.44	3	751.91		
4	17.0	39165.06	4	828.39		
5	10.0	32566.88	5	1015.64		
6	10.3	3799.27	6	37.10		
11(基礎)	1.12	72326.59	7	207.10		
総貨	重量	207607.90				

原子炉補助建屋の地盤ばね定数および減衰係数

地盤ばね定数および減衰係数

			原子炉補助建屋			
			EW方向	NS方向	UD方向	
水平	ばね定数	(kN/m)	4.022×10 ⁹	3.987×10 ⁹		
ばね	減衰係数	(kN·s/m)	3.716×10 ⁷	3.651×10 ⁷		
回転 ばね	ばね定数	(kN∙m/rad)	5.919×10 ¹²	6.680×10 ¹²		
	減衰係数	(kN·m·s/rad)	6.662×10 ⁹	8.167×10 ⁹	_	
鉛直 ばね	ばね定数	(kN/m)			5.036×10 ⁹	
	減衰係数	(kN·s/m)			6.619×10 ⁷	

地盤ばね

HONDEN

原子炉補助建屋の固有値解析結果

	EW方向		NS方向		UD方向		
次数	<mark>固有周期</mark> (s)	固有振動数 (Hz)	<mark>固有周期</mark> (s)	固有振動数 (Hz)	固有周期 (s)	固有振動数 (Hz)	備考
1	0.162	6.17	0.164	6.09	0.068	14.78	全体1次(EW,NS,UD)
2	0.085	11.77	0.081	12.32	0.030	33.52	
3	0.060	16.62	0.063	15.77	0.021	47.79	
4	0.043	23.23	0.049	20.52	0.017	58.41	
5	0.035	28.23	0.047	21.20			
6	0.034	29.52	0.037	27.20		<	
7	0.029	34.51	0.033	29.92			
8	0.029	34.56	0.031	32.49			

原子炉補助建屋の刺激関数図(EW方向:1~8次)

原子炉補助建屋の刺激関数図(NS方向:1~8次)

原子炉補助建屋の刺激関数図(UD方向:1~4次)

<地震応答解析モデルに係る検討>

[1] 地震応答解析モデルの変更点に関する検討
[2] 外周コンクリート壁ドーム部の剛性評価に関する検討
[3] コンクリートの実強度を用いた場合の剛性評価への影響検討
[4] 鉄筋コンクリート造部の減衰定数を5%としていることの検討

< 地震応答解析モデルに係る検討>

[1] 地震応答解析モデルの変更点に関する検討

・既往評価におけるモデルに対して最新の知見及び基準等を反映したモデルに変更していることから、モデル化に係る変更点及び応答性状への影響について検討。

[2] 外周コンクリート壁ドーム部の剛性評価に関する検討

・地震応答解析モデルにおける外周コンクリート壁ドーム部の剛性評価について検討。

[3] コンクリートの実強度を用いた場合の剛性評価への影響検討 ・鉄筋コンクリート造部の剛性を評価する際にコンクリートの設計基準強度を用いているこ とに関連して、実強度を用いた場合の剛性評価への影響を検討。

[4] 鉄筋コンクリート造部の減衰定数を5%としていることの検討 ・鉄筋コンクリート造部の減衰定数を5%としていることについて、建屋及び地盤それぞれ のひずみエネルギーの比率に応じたモード減衰の算定、観測記録によるシミュレーション 解析により検討。

[1] 地震応答解析モデルの変更点

項目	内容	工認モデル	BCモデル	備考
入力地震動	入力地震動の算定法	基準地震動を直接入力	同左	
	モデル	質点系多軸モデル	同左	
オロのエデルル	材料物性	各種規準による値を採用	同左	(1)
建産のモナル16	剛性評価	耐震壁を考慮	同左	
	減衰定数	RC:5%, S:2%	同左	_
山谷のエニック	底面ばね	水平及び回転ばねを考慮	同左	(2)
地盤のモナル16	側面ばね	考慮せず	同左	-
	耐震壁及び鉄骨	一部に非線形特性を設定	同左	(2)
ヲF标까?待1生	底面ばね	非線形特性を設定	同左	(3)

項目	反映事項
(1)	 ・建屋モデルにおける内部コンクリート(1/C)周辺のモデル化については、重機器を別途ループ解析により評価すること等を踏まえ、蒸気発生器(S/G)のみを連成。また、SGウォール部については鋼板の剛性を反映。 ・蒸気発生器及び原子炉格納容器の物性値を「発電用原子力設備規格 設計・建設規格(JSME) 2005」に基づき変更。 ・コンクリートのヤング係数及びせん断弾性係数を「鉄筋コンクリート構造計算規準・同解説」(1999年日本建築学会)に基づき再評価。
(2)	地盤ばねを「原子力発電所耐震設計技術指針」(日本電気協会JEAG4601-1991 追補版(以下「JEAG4601- 1991」)に基づき再評価。
(3)	・非線形特性をJEAG4601-1991に基づき再評価。 ・内部コンクリート及び原子炉周辺補機棟については新たに非線形特性を設定。

[1] 地震応答解析モデルの変更点(地震応答解析条件)

		項目	工認モデル	BCモデル	備考
	እ :	力地震動	基準地震動S2を直接入力	基準地震動Ssを直接入力	
		コンクリート強度	設計基準強度Fc	同左	
材	コンク リート	ヤング係数 (せん断弾性係数)	鉄筋コンクリート構造計算規準(1988)	鉄筋コンクリート構造計算規準(1999)	
料物		考慮範囲	耐震壁	同左	1
性	鉄骨	ヤング係数	鋼構造設計規準(1973)	鋼構造設計規準(2005)	
	機器	ヤング係数	発電用原子力設備に関する構造等の技術基準 告示501号	発電用原子力設備規格 設計・建設規格 (JSME2005)	
	洞	城衰定数	(RC) 5%, (S) 2%, (機器) 3%, 1%	同左	
	I/C	重機器モデル	蒸気発生器,原子炉容器,加圧器, 1次冷却材ポンプをl/Cに連成	蒸気発生器をI/Cに連成 (他の重機器はI/C質点に質量として考慮)	2
	モデル化	I∕C剛性評価	(鋼板コンクリート構造部分:SGウォール部) 鉄筋コンクリート構造の耐震壁同様に評価	(鋼板コンクリート構造部分:SGウォール部) JEAG4618-2005を踏まえ,鋼板部分の剛性を考慮	
	建屋一地盤相互作用 地盤ばね		スウェイ・ロッキングモデル	同左	
解析			JEAG4601-1987による近似地盤ばね 剛性-中心変位、中心回転角に基づく評価 減衰-25Hz以上では水平10%、回転5%一定値	JEAG4601-1991による近似地盤ばね 「剛性-相加平均変位、荷重重み平均回転角に基づく評価 減衰-振動数に比例(減衰係数C一定)	3
モデル		外周コンクリート壁 (シリンダー部)	非線形 (JEAG4601-1987)	非線形 (JEAG4601-1991)	
	非線形	FH/B 鉄骨部	非線形 (ブレース構面:建築学会文献をもとに設定 ・ラーメン構面:漸増解析結果から設定	非線形 (ブレース構面:JEAG4601-1991 - ラーメン構面:同左	
	行任	内部コンクリート		非線形	
		原子炉周辺補機棟	緑形	【 RC部:JEAG4601−1991 SC部:JEAG4618−2005 】	
		地盤ばね	非線形特性を考慮	同左	
	餫	驿析手法	時刻歷応答解析	同左	

[1] ①材料物性

BCモデルでは、最新の規格・基準等を基に建物・構築物、重機器の材料物性を再設定した結果、 ヤング係数またはせん断弾性係数で土約5%以内の変動である。

	工認	モデル	BCモデル		
	ヤング係数 せん断弾性係数		ヤング係数	せん断弾性係数	
	E (N/mm²)	G (N/mm²)	E (N/mm²)	G (N/mm²)	
コンクリート	2.39×10 ⁴	1.03×10 ⁴	2.34×10 ⁴	9.75×10 ³	
鉄骨	2.06×10⁵	7.94×10 ⁴	2.05×10⁵	7.90×10 ⁴	
原子炉格納容器	1.90×10⁵	7.32×10 ⁴	1.96×10⁵	7.54×10⁴	
* = & 4 = =	1.92×10⁵	7.39×10 ⁴	1.85×10⁵	7.12×10⁴	
烝 灵 艽 玍岙			1.80×10 ⁵ (水室部)	6.92×10 ⁴ (水室部)	

[1] ②重機器のモデル化

BCモデルでは、固有周期が内部コンクリートの固有周期と近接し、重量の大きい蒸気発生器を連成させ、その他の重機器は内部コンクリートの付加質量として考慮している。

[1] ③地盤ばね(剛性)

BCモデルの地盤ばねの剛性評価は、代表変位・回転角の取り方を、工認モデルでの底面中心の変 位・回転角から相加平均変位・荷重重み平均回転角に変更した結果、水平ばねで約20%、回転 ばねで約50%程度大きくなっている。

[1] ③地盤ばね(減衰)

BCモデルの地盤ばねの減衰評価は、工認モデルでの高次(25Hz以上)の減衰制限を外すとともに、 地盤ばねの減衰係数をモード減衰に等価な建屋の減衰マトリクスに後から組み込むよう変更している。

JUNDEN

[1] ひずみエネルギー比例型モード減衰定数の比較

BCモデルのばね剛性及び減衰係数を用いて地盤-建屋連成系のひずみエネルギー比例型モード減 衰定数を算定し工認モデルと比較した結果、主要なモードのモード減衰定数はほとんど変化しないこ とを確認。

			エ認・	モデル			BC	Eデル							
方向	次数	次数	次数	次数	次数	次数	固有	地盤に 減衰	ばねの 定数	モード 減衰	固有	地盤(減衰	ばねの 定数	モード 減衰	ſ
			水平 (%)	回転 (%)	定数 (%)	(Hz)	水平 (%)	回転 (%)	定数 (%)						
	1	4.75	10.17	0.55	4.92	4.68	12.09	0.72	4.97						
	2	6.12	13.12	1.12	1.10	6.23	15.90	0.95	1.12						
	3	7.12	15.28	1.69	3.11	7.10	17.99	1.09	3.14						
EW	4	8.25	17.72	2.52	4.98	8.10	20.34	1.24	4.99						
ΓW	5	9.54	20.54	3.70	5.14	9.50	23.50	1.45	5.09						
	6	14.15	30.78	9.90	5.16	13.86	32.48	2.12	5.11						
	7	14.84	32.35	11.07	3.41	14.50	33.68	2.22	3.59						
	8	17.86	39.36	16.94	6.16	17.74	39.29	2.71	5.80						
	1	1.77	3.99	0.06	2.01	1.76	4.52	0.42	2.01						
	2	4.25	9.54	0.57	2.02	4.23	10.74	1.01	2.02						
	3	5.19	11.66	1.01	4.95	5.12	12.93	1.22	5.00						
NC	4	6.13	13.76	1.59	1.10	6.23	15.61	1.49	1.12						
112	5	8.98	20.20	4.41	6.09	8.94	21.85	2.13	5.80						
	6	9.89	22.28	5.64	5.53	9.75	23.64	2.33	5.53						
	7	15.27	34.90	15.95	3.67	14.41	32.97	3.44	3.45						
	8	16.82	38.67	19.79	5.03	16.44	36.55	3.92	5.01						

共通】 hs:地盤ばねのj次の減衰定数

$$_{j}h_{s} = \frac{\sqrt{1 + (K_{Ij} / K_{Rj})^{2}} - 1}{K_{Ij} / K_{Rj}}$$

【エ認モデル】 *K_{Rj}:*地盤ばねの*j*次の実部の値 *K_{lj}:地盤ばねのj*次の虚部の値

ただし 25Hz 以上では 水平*hs*=10% 、 回転*hs*= 5% の一定値

BCモデル】 *K_R:*地盤ばねのω=0 での実部の値 *K_I:*地盤ばねの*j*次の虚部の値

地盤ばねの減衰係数 C_s の傾きと j次の固有振動数 ω_j から K_b を 算定。 $K_{I,i} = C_s \cdot \omega_i$

[1] 応答解析結果(最大応答加速度)

JONDEN

・工認モデル及びBCモデルのS2入力による応答解析結果を比較し、モデルによる差異が小さいことを把握。

・BCモデルのS2及びSs入力による応答解析結果を比較し、Ssによる応答はS2による応答と同等または最大で約3割大きい結果となっていることを把握。

<地震応答解析モデルに係る検討>

[1] 地震応答解析モデルの変更点に関する検討

・既往評価におけるモデルに対して最新の知見及び基準等を反映したモデルに変更していることから、モデル化に係る変更点及び応答性状への影響について検討。

[2] 外周コンクリート壁ドーム部の剛性評価に関する検討

・地震応答解析モデルにおける外周コンクリート壁ドーム部の剛性評価について検討。

[3] コンクリートの実強度を用いた場合の剛性評価への影響検討 ・鉄筋コンクリート造部の剛性を評価する際にコンクリートの設計基準強度を用いているこ とに関連して、実強度を用いた場合の剛性評価への影響を検討。

[4] 鉄筋コンクリート造部の減衰定数を5%としていることの検討 ・鉄筋コンクリート造部の減衰定数を5%としていることについて、建屋及び地盤それぞれのひずみエネルギーの比率に応じたモード減衰の算定、観測記録によるシミュレーション解析により検討。

[2] 外周コンクリート壁(水平方向)の剛性評価

・質点系モデルは、各層の全断面積を形状係数(κ=2)で除して算出したせん断断面積を基にしたせん断剛性、各層の断面形状に応じた断面2次モーメントを基に曲げ剛性を設定。
 ・質点系モデルと軸対称FEMモデルで固有値解析結果(固有振動数及び振動モード)が概ね一致することを確認。

[2] 外周コンクリート壁(鉛直方向)の剛性評価

軸対称FEMモデルを用いた自重解析により算定される節点変位及び荷重の関係を基にドーム部の 面外剛性を設定している。

< 地震応答解析モデルに係る検討>

[1] 地震応答解析モデルの変更点に関する検討

・既往評価におけるモデルに対して最新の知見及び基準等を反映したモデルに変更していることから、モデル化に係る変更点及び応答性状への影響について検討。

[2] 外周コンクリート壁ドーム部の剛性評価に関する検討

・地震応答解析モデルにおける外周コンクリート壁ドーム部の剛性評価について検討。

[3] コンクリートの実強度を用いた場合の剛性評価への影響検討 ・鉄筋コンクリート造部の剛性を評価する際にコンクリートの設計基準強度を用いていることに関連して、実強度を用いた場合の剛性評価への影響を検討。

[4] 鉄筋コンクリート造部の減衰定数を5%としていることの検討

・鉄筋コンクリート造部の減衰定数を5%としていることについて、建屋及び地盤それぞれのひずみエネルギーの比率に応じたモード減衰の算定、観測記録によるシミュレーション解析により検討。

[3] コンクリート剛性の変動

伊方3号機建設時に設置したモニタリング用供試体からの採取コア強度データを基に、剛性の変動 を評価した結果、ヤング係数は設計基準強度による剛性の1.18倍であることを確認。

	<mark>平均値</mark> (N/mm ²)	標準偏差 (N/mm ²)	変動係数 (標準偏差/平均値)	備考
コンクリート強度 (Fc)	43.8 (設計の1.66倍)	3.3	0.08	モニタリング用供試体 1年目試験結果 (21データ)
コンクリート剛性 (ヤング係数)	2.77×10 ⁴ (設計の1.18倍)	0.07×10⁴	0.03	建屋剛性∝ (Fc) ^{1/3} の 関係から算出

[3] 固有值解析結果

コンクリート剛性の変動を+20%と仮定した場合の固有値解析結果から、鉄筋コンクリート造の部 位が支配的なモードにおける固有振動数が最大で1割弱ほど大きくなることを確認。

^ 力業h	X(EW)方向 固有振動数(Hz)		Y(NS)方向 固有振動数(Hz)		Z(UD)方向 固有振動数(Hz)	
<u>۸۲ א</u> צ	BC モデル	<mark>剛性</mark> +20%	BC モデル	剛性 +20%	BC モデル	<mark>剛性</mark> +20%
1	4.68	5.12 (1.09)	1.76	1.76 (1.00)	12.07	13.13 (1.09)
2	6.23	6.24 (1.00)	4.23	4.24 (1.00)	16.00	16.23 (1.01)
3	7.10	7.27 (1.02)	5.12	5.59 (1.09)	16.77	17.29 (1.03)
4	8.10	8.76 (1.08)	6.23	6.25 (1.00)	17.80	18.05 (1.01)
5	9.50	10.11 (1.06)	8.94	9.66 (1.08)	22.13	22.54 (1.02)
6	13.86	14.61 (1.05)	9.75	10.60 (1.09)	23.86	25.83 (1.08)
7	14.50	15.28 (1.05)	14.41	14.60 (1.01)	24.03	26.16 (1.09)
8	17.74	18.36 (1.04)	16.44	18.01 (1.10)	32.71	35.54 (1.09)

※()内は、BCモデルに対する比率

< 地震応答解析モデルに係る検討>

[1] 地震応答解析モデルの変更点に関する検討

・既往評価におけるモデルに対して最新の知見及び基準等を反映したモデルに変更していることから、モデル化に係る変更点及び応答性状への影響について検討。

[2] 外周コンクリート壁ドーム部の剛性評価に関する検討

・地震応答解析モデルにおける外周コンクリート壁ドーム部の剛性評価について検討。

- [3] コンクリートの実強度を用いた場合の剛性評価への影響検討 ・鉄筋コンクリート造部の剛性を評価する際にコンクリートの設計基準強度を用いていることに関連して、実強度を用いた場合の剛性評価への影響を検討。
- [4] 鉄筋コンクリート造部の減衰定数を5%としていることの検討 ・鉄筋コンクリート造部の減衰定数を5%としていることについて、建屋及び地盤それぞれ のひずみエネルギーの比率に応じたモード減衰の算定、観測記録によるシミュレーション 解析により検討。

[4] ひずみエネルギー比例型モード減衰定数

 ・各次モードの振動数に応じた地盤ばねの減衰定数を算定し、全体系の各次の振動数における建 屋及び地盤それぞれのひずみエネルギーの比率に応じたモード減衰(全体系のひずみエネルギー 比例型モード減衰定数)を算定。

・各次のモード減衰定数が、それぞれのモードにおいて支配的な部位の材料減衰の設定値とほぼ同等の値であり、建屋各部位の材料減衰に比べて地盤の減衰の影響が小さい傾向が現れていること(伊方発電所が硬質な岩盤に立地していることと整合的)を確認。

	EW方向			NS方向		
次数	固有振動数 (Hz)	モード <mark>減衰定数</mark> ^(%)	支配的な部位 (材料減衰)	固有振動数 (Hz)	モード減衰定数 (%)	支配的な部位 (材料減衰)
1	4.68	4.97	0/S (5%)	1.76	2.01	FH/B (2%)
2	6.23	1.12	C/V (1%)	4.23	2.02	FH/B (2%)
3	7.10	3.14	FH/B (2%)	5.12	5.00	0/S (5%)
4	8.10	4.99	I/C (5%)	6.23	1.12	C/V (1%)

[4] 検討内容

 ・基礎版上の観測記録を入力としたBCモデルの応答解析(鉄筋コンクリート造部の減衰定 数として5%及び3%を設定)を実施。
 ・減衰定数5%と3%で応答解析結果に大きな違いは無いが、減衰定数を5%とした場合 の方が3%とした場合に比較してより観測記録を近似する傾向がある。
 ・建屋・地盤を含めた全体系の減衰の中で鉄筋コンクリート造部の減衰定数を5%と設定し て支障が無い。

JONDEN

[4] 原子炉建屋の地震観測位置

[4] 応答解析結果と観測記録 (最大応答加速度)

[4] 応答解析結果と観測記録 (床応答スペクトル:EW方向)

JUNDEN

[4] 応答解析結果と観測記録 (床応答スペクトル:NS方向)

[4] 応答解析結果と観測記録 (床応答スペクトル:UD方向)

内部コンクリート(EL.+32m)

外周コンクリート壁(EL.+83m)

||章 安全上重要な建物・構築物の耐震安全性評価

1. 基本方針

2. 原子炉建屋等の地震応答解析モデル

3. 原子炉建屋等の耐震安全性評価結果

原子炉建屋の地震応答解析結果(EW方向)

原子炉建屋の地震応答解析結果(NS方向)

原子炉建屋の地震応答解析結果(UD方向)

原子炉建屋の地震応答解析結果(接地率)

JEAG4601-1991に基づき評価した接地率は、基礎浮上り非線形を考慮した地震応 答解析結果を用いることができる65%以上である。

		EW方向	NS方向
	最大転倒モーメント(×10 ⁷ kN・m)	3.96	3.92
Ss-1	浮上り限界モーメント(×10 ⁷ kN・m)	2.56	3.14
	接地率 (%)	72.6	87.6
Ss-2	最大転倒モーメント(×10 ⁷ kN·m)	2.22	2.01
	浮上り限界モーメント(×10 ⁷ kN・m)	2.56	3.14
	接地率 (%)	100	100

原子炉建屋の地震応答解析結果(接地圧:Ss-1)

接地圧は、地盤の短期許容支持力(7840kN/m²)に対して十分な余裕がある。

EW方向

n | | | |

【鉛直地震力を下向きに考慮※した場合】

NS方向

原子炉建屋の地震応答解析結果(接地圧:Ss-2)

接地圧は、地盤の短期許容支持力(7840kN/m²)に対して十分な余裕がある。

EW方向

原子炉建屋の耐震安全性評価結果

耐震壁の最大応答せん断ひずみは、0.63×10-3であり、評価基準値(2.0×10-3)を 超えない。

	EW	方向	NS方向		
基準地震動	最大応答せん断 ひずみ	部位	最大応答せん断 ひずみ	部位	
Ss-1	0.58×10 ⁻³	0/S 10 部材	0.63×10 ⁻³	0/S 10 <mark>部材</mark>	
Ss-2	0.22×10 ⁻³	0/S 11 部材	0.17×10 ⁻³	0/S 12部材	

原子炉補助建屋の地震応答解析結果(EW方向)

原子炉補助建屋の地震応答解析結果(NS方向)

原子炉補助建屋の地震応答解析結果(UD方向)

原子炉補助建屋の地震応答解析結果(接地率)

JEAG4601-1991に基づき評価した接地率は、基礎浮上り非線形を考慮した地震応 答解析結果を用いることができる65%以上である。

		EW方向	NS方向
Ss-1	最大転倒モーメント(×10 ⁷ kN・m)	3.43	3.15
	浮上り限界モーメント(×10 ⁷ kN・m)	2.49	2.71
	接地率 (%)	81.1	91.8
Ss-2	最大転倒モーメント(×10 ⁷ kN·m)	2.61	1.88
	浮上り限界モーメント(×10 ⁷ kN・m)	2.49	2.71
	接地率 (%)	97.5	100

原子炉補助建屋の地震応答解析結果(接地圧:Ss-1)

接地圧は、地盤の短期許容支持力(7840kN/m²)に対して十分な余裕がある。

EW方向

原子炉補助建屋の地震応答解析結果(接地圧:Ss-2)

接地圧は、地盤の短期許容支持力(7840kN/m²)に対して十分な余裕がある。

EW方向

JUNDEN

原子炉補助建屋の耐震安全性評価結果

耐震壁の最大応答せん断ひずみは、最大で0.84×10⁻³であり、評価基準値 (2.0×10⁻³)を超えない。

	EW方向		NS方向	
基準地震動	最大応答せん断 ひずみ	部位	最大応答せん断 ひずみ	部位
Ss-1	0.55×10 ⁻³	D/G 6 部材	0.84×10 ⁻³	A/B 4 部材
Ss-2	0.45×10 ⁻³	D/G 6 部材	0.16×10 ⁻³	A/B 4 部材

川章 安全上重要な機器・配管系の耐震安全性評価

- 1. 基本方針
- 2. 床応答スペクトル

3. 減衰定数

4. 応答倍率法による評価

5. 評価基準値

6. 機器・配管系の耐震安全性評価結果

7. 今後の予定

川章 安全上重要な機器・配管系の耐震安全性評価

1. 基本方針

2. 床応答スペクトル

3. 減衰定数

4. 応答倍率法による評価

5. 評価基準値

6. 機器・配管系の耐震安全性評価結果

7. 今後の予定

評価方針

基準地震動Ssに対する耐震設計上重要な機器・配管系の安全機能の保持の観点から耐震安全性の評価を実施

【評価対象】 〇中間報告においては、伊方3号機耐震Sクラス設備のうち 以下の主要な施設^(注) 炉内構造物、制御棒(挿入性)、蒸気発生器、一次冷却材管、 余熱除去ポンプ、余熱除去設備配管、原子炉容器、 原子炉格納容器

(注)なお、「伊方発電所3号機「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う耐震安全性 評価結果報告書」(平成21年2月2日提出済)では、中間報告で報告した設備も含む全ての耐震Sク ラス設備の耐震安全性評価、BクラスおよびCクラス設備のうち必要なものについて、その破損によるSクラス設備への波及的影響の評価を実施している。

原子炉を「止める」,「冷やす」,放射性物質を「閉じ込め る」といった安全上重要な機能を有する耐震Sクラスの主要 な設備

評価対象設備の耐震安全性を確認する観点から重要な 評価部位について,既往評価結果(工認時の耐震計算 書)を参考に選定した。

さらに,評価部位のうち,最も耐震裕度が小さい箇所 を代表評価部位として選定し,評価している。

評価対象設備および評価部位

評価対象設備および工認時解析モデル(1/8)

評価対象設備および工認時解析モデル(2/8)

○一次冷却ループ関係 A ループ 急気発生蓄 原子炉格納容器 Cループ 「外周コンクリート里」 蒸気発生器 上部朋支持構造物 к23, 蒸気発生器 中間期支持構造物 Aループ Bループ 蒸気発生器 下部支持構造物 Cループ 思科取以律 1次冷却材ポン。
上部支持構造物。 蒸気発生器 支持脚 [] 次冷却取通] 1 次冷却材水: 内部コンクリート 1 次冷却材ポンプ 下部支持構造物 加圧費 Bループ 1次冷却材素ンプ (子炉容器支持構造物 原子炉周辺涌风楝 2023-160 ---- Ø.a _____ #a -----E 固定点 [P.N] mint 今体应播系 TATIT

地震応答解析モデル図(地盤-建物・構築物-機器・配管連成モデル)

評価対象設備および工認時解析モデル(3/8)

工認評価結果における耐震裕度最小箇所

炉心槽 上部炉心支持板 制御棒クラスタ案内管 Kθ₂ 制御棒クラスタ案内管 上部炉心支持板 ΚθιΟ 夏子炉容器上部胴 炉心槽フランジ γ 原子炉容器 フランジ 5 4 4 上部炉心支持柱 (A) フランジ接続部 1 Kθ3 Kt 6 7 $\overline{7}$ 炉心槽 ・制御榛クラスタ Kt: 案内管 燃料集合体 12 上部炉心支持柱 原子炉容器 (B) 中間接続部 支持構造物 上部炉心板 2 8 上部炉心板 下部炉心支持柱 2. 13 下部炉心板 ラジアルサポート 下部炉心板 9 3 ⑦ 下部接続部 16 15 Kt_1 14 8 . M 17 8:1:9 18 28 8 下部炉心支持柱 9 口剛 接 合 下部炉心支持板 ラジアルキー 下部炉心支持板 もピン接合 炉内計装案内管 の回転ばね 炉心そう(評価部位) 地震応答解析モデル図 炉内構造物(評価対象設備)鳥瞰図 [材質:SUS304(ステンレス鋼)]

④ 炉内構造物

点

ŋ

評価対象設備および工認時解析モデル(4/8)

評価対象設備および工認時解析モデル(5/8)

評価対象設備および工認時解析モデル(6/8)

⑥余熱除去設備配管

地震応答解析モデル図(ブロック12)

評価対象設備および工認時解析モデル(7/8)

評価対象設備および工認時解析モデル(8/8)

制御棒クラスタ挿入時間計算式(諸抗力との関係)

中間報告評価対象設備(伊方3号機)の固有周期

評価対象設備(項目)	固有周期(秒)
原子炉容器	水平:0.053 鉛直:水平に同じ ^{※1}
蒸気発生器	水平:0.112 鉛直:0.070
炉内構造物	水平:0.053 鉛直:水平に同じ ^{※1}
一次冷却材管	水平:0.112 鉛直:0.070
余熱除去ポンプ	水平:0.033以下 鉛直:0.033以下
余熱除去設備配管	水平:0.085 鉛直:水平に同じ ^{※1}
原子炉格納容器	水平:0.161 鉛直:0.060
制御棒(挿入性)	水平:0.063 ^{※2} :0.035 :0.270 鉛直:水平に同じ ^{※1}

※1 中間報告時の耐震安全性評価では、水平と同じ固有周期を用いている。

※2 上段:制御棒クラスタ駆動装置 中段:制御棒クラスタ案内管

下段:燃料集合体

- 構造強度評価

基準地震動Ssにより設備に加わる地震力と内圧等によって部材に発生する 力(発生値)が材料の許容される強度(評価基準値)以下であることを確認

- 動的機能維持評価(制御棒挿入性) 地震時の制御棒の挿入時間が,規定時間(評価基準値)以下であることを 確認

中間報告における耐震安全性評価の流れ

荷重の組合せ(中間報告)

■中間報告においては、「通常運転時に生じる荷重」および「運転時の異常な過渡変化時に生じる荷重」と基準地震動Ssによる地震力を組合せて評価する。

- 伊方発電所における基準地震動Ss-1の年超過確率は、概ね10⁻⁵/ 年から10⁻⁶/年である。
 (図-1参照)
- ●「原子力発電所耐震設計技術指針 JEAG4601-1984」における 運転状態と地震動との組合せに関する記載の中で、基準地震動S2の 発生確率は5×10⁻⁴~10⁻⁵/年としている。
- JEAG4601-1984の考え方に基づけば、JEAG4601-1984 にて想定しているS2の発生確率よりも伊方発電所における基準地震動 Ss-1の年超過確率が小さいことから、これまでの工事計画認可におい て実績のある荷重組合せの考え方が適用できると考えている。

伊方発電所におけるSs-1の年超過確率

図-1 設計用応答スペクトルSs-1の年超過確率(水平方向)

運転状態と基準地震動Ssとの組合せの確率的評価

JUNDEN

荷重の組合せ(今後の予定)

- ■本報告(補正)に際しては、先述の組合せに加えて、「事故時に生じる荷重」の 発生確率と継続時間および地震動の年超過確率の関係を踏まえ、必要に応 じて、「事故時に生じる荷重」については弾性設計用地震動Sdとの組合せを 考慮した評価を実施する。
 - 伊方発電所における弾性設計用地震動Sdの年超過確率は、概ね 10⁻⁴/年程度である。
 (図-3参照)
 - ●「原子力発電所耐震設計技術指針 JEAG4601-1984」における 運転状態と地震動との組合せに関する記載の中で、基準地震動S1の 発生確率は10⁻²~5×10⁻⁴/年としている。
 - JEAG4601-1984の考え方に基づけば、JEAG4601-1984 にて想定しているS1の発生確率よりも伊方発電所における弾性設計用 地震動Sdの年超過確率が小さいことから、これまでの工事計画認可に おいて実績のある荷重組合せの考え方が適用できると考えている。

伊方発電所におけるSdの年超過確率

JONDEN

図-3 弾性設計用地震動Sdの年超過確率(水平方向)

運転状態と弾性設計用地震動Sdとの組合せの確率的評価

HONDEN

【参考】弾性設計用地震動Sdの設定

弾性設計用地震動Sdの時刻歴波形(Sd-H)

弾性設計用地震動Sdの応答スペクトル

JUNDEN