原子力発第25301号 令和7年11月20日

愛媛県知事中村 時広殿

四国電力株式会社
取締役社長 社長執行役員
宮 本 喜 弘

伊方発電所1号機廃止措置の第2段階への移行に関する事前協議について

拝啓 時下益々ご清祥のこととお慶び申し上げます。弊社事業につきましては、平 素から格別なご高配を賜り厚く御礼申し上げます。

さて、弊社は、伊方発電所1号機の第1段階における廃止措置作業について、安全確保を第一に、計画どおりに進めてまいりました。

このたび、伊方発電所1号機の第2段階移行のため、本日、原子力規制委員会へ 廃止措置計画変更認可申請を行います。

つきましては、「伊方原子力発電所周辺の安全確保及び環境保全に関する協定書」 第9条に基づき、伊方発電所1号機の第2段階における廃止措置に係る計画につい て、事前協議をさせていただきたく、何卒よろしくお願い申し上げます。

敬具

原子力発第25299号 令和7年11月20日

原子力規制委員会 殿

住 所 高松市丸の内2番5号

申請者名 四国電力株式会社

代表者氏名 取締役社長 社長執行役員

宮本 喜弘

伊方発電所1号炉の廃止措置計画変更認可申請書

核原料物質、核燃料物質及び原子炉の規制に関する法律第43条の3の34第3項において準用する同法第12条の6第3項の規定に基づき,下記のとおり伊方発電所1号炉の廃止措置計画変更認可の申請をいたします。

記

一 氏名又は名称及び住所並びに代表者の氏名

名 称 四国電力株式会社

住 所 高松市丸の内2番5号

代表者の氏名 取締役社長 社長執行役員 宮本 喜弘

二 工場又は事業所の名称及び所在地

名 称 伊方発電所

所 在 地 愛媛県西宇和郡伊方町

三 発電用原子炉の名称

名 称 伊方発電所 1号原子炉

四 変更に係る事項

平成29年6月28日付け原規規発第1706284号をもって認可を受け、 別紙1のとおり変更認可を受けた伊方発電所1号炉の廃止措置計画認可 申請書の記載事項中、次の事項の記述を別紙2のとおり変更する。

- 四 廃止措置対象施設及びその敷地
- 五 廃止措置対象施設のうち解体の対象となる施設及びその解体の方 法
- 六 性能維持施設
- 八 核燃料物質の管理及び譲渡し
- 九 核燃料物質による汚染の除去
- 十 核燃料物質又は核燃料物質によって汚染された物の廃棄

五 変更の理由

- (1) 原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴い, 関連する記載の変更及び追加を行う。
- (2) 解体対象施設のうち1号及び2号炉共用施設の整理の変更に伴い, 関連する記載の変更及び追加を行う。
- (3) その他, 記載の適正化等を行う。

別紙1

伊方発電所 1 号炉廃止措置計画変更認可

認可年月日	認可番号
令和 2年10月 7日	原規規発第2010075号
令和 5年 2月 7日	原規規発第2302073号

変更の内容

四 廃止措置対象施設及びその敷地

廃止措置対象施設及びその敷地の記述の一部を,伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

変更前	変更後	備考
. 廃止措置対象施設の状況 (3) 廃止措置対象施設の状況 c. 廃止措置対象施設の汚染状況 1 号炉は、平成23年に原子炉を停止するまでの約35年間の運転により、設備及び建家の一部が放射性物質によって汚染されている。原子炉容器及び原子炉容器周囲のコンクリート壁を含む領域(以下「原子炉領域」という。)には、原子炉からの中性子による放射化により、放射能レベルが比較的高い汚染がある。 これらの汚染された区域はすべて管理区域に設定し、管理して	四 廃止措置対象施設及びその敷地 2. 廃止措置対象施設の状況 (3) 廃止措置対象施設の状況 (初回申請時点) c. 廃止措置対象施設の汚染状況 1 号炉は、平成23年に原子炉を停止するまでの約35年間の運転により、設備及び建家の一部が放射性物質によって汚染されている。原子炉容器及び原子炉容器周囲のコンクリート壁を含む領域(以下「原子炉領域」という。)には、原子炉からの中性子による放射化により、放射能レベルが比較的高い汚染がある。 これらの汚染された区域はすべて管理区域に設定し、管理して	・記載の適正化 (記載時期の明確化)
いる。 廃止措置対象施設の管理区域全体図を第4.2図, 東施設の推定汚染分布を第4.3図に示す。	いて評価した主な廃止措置対象施設の推定汚染分布を第4.3図に示す。	・記載の適正化 (評価時期の明確化)

	変更前				変更後				
第4.1表 原子	炉設置許可及び原子	炉設置変更許可の経緯(1/ <u>5</u>)		第4.1表 原子	炉設置許可及び原子炉	『設置変更許可の経緯(1/ <u>6</u>)	・許可の経緯追加に伴う総数		
許可年月日	許可番号	備考		許可年月日	許可番号	備考	変更		
昭和47年11月29日	47原第10921号	1 号炉新設		昭和47年11月29日	47原第10921号	1号炉新設			
昭和48年 5月26日	48原第5305号	1 号原子炉施設の変更 (海水淡水化装置の設置)		昭和48年 5月26日	48原第5305号	1 号原子炉施設の変更 (海水淡水化装置の設置)			
昭和50年 4月25日	50原第2101号	1 号原子炉施設の変更 【安全保護回路の変更 】		昭和50年 4月25日	50原第2101号	1 号原子炉施設の変更 【安全保護回路の変更 】			
昭和50年12月17日	50原第9167号	1 号原子炉施設の変更 【使用済燃料貯蔵ラックの増設 】		昭和50年12月17日	50原第9167号	1 号原子炉施設の変更 【使用済燃料貯蔵ラックの増設 】			
昭和51年12月 9日	51安(原規)第166 号	1号原子炉施設の変更 (初装荷炉心におけるバーナブルポ イズンの使用に係る変更		昭和51年12月 9日	51安(原規)第166 号	1号原子炉施設の変更 (初装荷炉心におけるバーナブルポ イズンの使用に係る変更			
昭和52年 3月30日	52安(原規)第100 号	2号炉増設		昭和52年 3月30日	52安(原規)第100 号	2 号炉増設			
昭和52年 8月15日	52安(原規)第182 号	1 号原子炉施設の変更 【取替燃料濃縮度の変更 】 【取替炉心におけるバーナブルポイ ズンの使用に係る変更		昭和52年 8月15日	52安(原規)第182 号	1 号原子炉施設の変更 【取替燃料濃縮度の変更 】 【取替炉心におけるバーナブルポイ ズンの使用に係る変更			
昭和53年 8月15日	53安(原規)第206 号	1 号原子炉施設の変更 【B型燃料の使用に係る変更 】		昭和53年 8月15日	53安(原規)第206 号	1 号原子炉施設の変更 【B型燃料の使用に係る変更 】			
昭和54年 7月21日	54資庁第1833号	1 号及び 2 号原子炉施設の変更 【1 号炉の新燃料貯蔵設備の増設】 【2 号炉の出力分布調整用制御棒ク ラスタ駆動装置の変更		昭和54年 7月21日	54資庁第1833号	1 号及び 2 号原子炉施設の変更 【1 号炉の新燃料貯蔵設備の増設 】 (2 号炉の出力分布調整用制御棒ク ラスタ駆動装置の変更			
昭和54年 7月28日	54資庁第10264号	1 号原子炉施設の変更 【安全保護回路の変更 】		昭和54年 7月28日	54資庁第10264号	1 号原子炉施設の変更 (安全保護回路の変更)			
昭和54年11月24日	54資庁第11330号	2 号原子炉施設の変更 (新燃料貯蔵設備の増設) (安全保護回路の変更)		昭和54年11月24日	54資庁第11330号	2 号原子炉施設の変更 (新燃料貯蔵設備の増設) (安全保護回路の変更)			
昭和56年 4月 3日	55資庁第13416号	1号及び2号原子炉施設の変更 (発電所敷地の拡大) (雑固体焼却設備の新設) (固体廃棄物貯蔵庫の増設)		昭和56年 4月 3日	55資庁第13416号	1 号及び 2 号原子炉施設の変更 (発電所敷地の拡大) (雑固体焼却設備の新設) (固体廃棄物貯蔵庫の増設)			
昭和56年11月11日	56資庁第10698号	1 号及び 2 号原子炉施設の変更 (燃料取替体数及び取替燃料濃縮度 の変更		昭和56年11月11日	56資庁第10698号	1 号及び 2 号原子炉施設の変更 (燃料取替体数及び取替燃料濃縮度 の変更			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

	変更	前		備考		
第4.1表 原子	炉設置許可及び原子均	戸設置変更許可の経緯(2/ <u>5</u>)	第4.1表 原子	炉設置許可及び原子炉	戸設置変更許可の経緯(2/ <u>6</u>)	・ 許可の経緯追加に伴う総数
許可年月日	許可番号	備考	許可年月日	許可番号	備考	変更
昭和58年10月27日	58資庁第11625号	1 号及び2 号原子炉施設の変更 新燃料貯蔵設備の増設	昭和58年10月27日	58資庁第11625号	1号及び2号原子炉施設の変更 (新燃料貯蔵設備の増設)	
		2号炉B型燃料の使用に係る変更			2号炉B型燃料の使用に係る変更	
昭和61年 5月26日	59資庁第7577号	3号炉増設	昭和61年 5月26日	59資庁第7577号	3号炉増設	
平成元年11月28日	63資庁第13053号	3号原子炉施設の変更 (蒸気発生器の水室鏡の変更) (主蒸気安全弁の個数及び容量の変更 更 (ほう酸注入タンクの削除) (ドラム詰装置の変更)	平成元年11月28日	63資庁第13053号	3 号原子炉施設の変更 【蒸気発生器の水室鏡の変更 】 (主蒸気安全弁の個数及び容量の変更 更 (ほう酸注入タンクの削除) 「ドラム詰装置の変更 】	
平成 3年 7月23日	2資庁第9590号	1号,2号及び3号原子炉施設の変更 更 (燃料集合体最高燃焼度の変更) 取替燃料の一部にガドリニア入り 燃料を使用 (ベイラの1,2,3号炉共用化) 使用済燃料の国内再処理委託先の 変更	平成 3年 7月23日	2資庁第9590号	1号,2号及び3号原子炉施設の変更 更 (燃料集合体最高燃焼度の変更) 取替燃料の一部にガドリニア入り 燃料を使用 (ベイラの1,2,3号炉共用化) (使用済燃料の国内再処理委託先の 変更	
平成 8年 7月10日	7資庁第14393号	1号,2号及び3号原子炉施設の変更 (3号炉核燃料物質取扱設備の一部及び使用済燃料貯蔵設備の1,2,3号炉共用化 (1号炉蒸気発生器の取替え) (1,2号炉出力分布調整用制御棒クラスタの撤去 (1,2号炉B型バーナブルポイズンの採用 (1,2号炉液体廃棄物の廃棄設備の一部共用化 (1号炉蒸気発生器保管庫の設置) (3号炉使用済樹脂貯蔵タンクの1,2,3号炉共用化	平成 8年 7月10日	7資庁第14393号	1号,2号及び3号原子炉施設の変更 (3号炉核燃料物質取扱設備の一部及び使用済燃料貯蔵設備の1,2,3号炉共用化 (1号炉蒸気発生器の取替え) (1,2号炉出力分布調整用制御棒クラスタの撤去 (1,2号炉B型バーナブルポイズンの採用 (1,2号炉液体廃棄物の廃棄設備の一部共用化 (1号炉蒸気発生器保管庫の設置) (3号炉使用済樹脂貯蔵タンクの1,2,3号炉共用化	

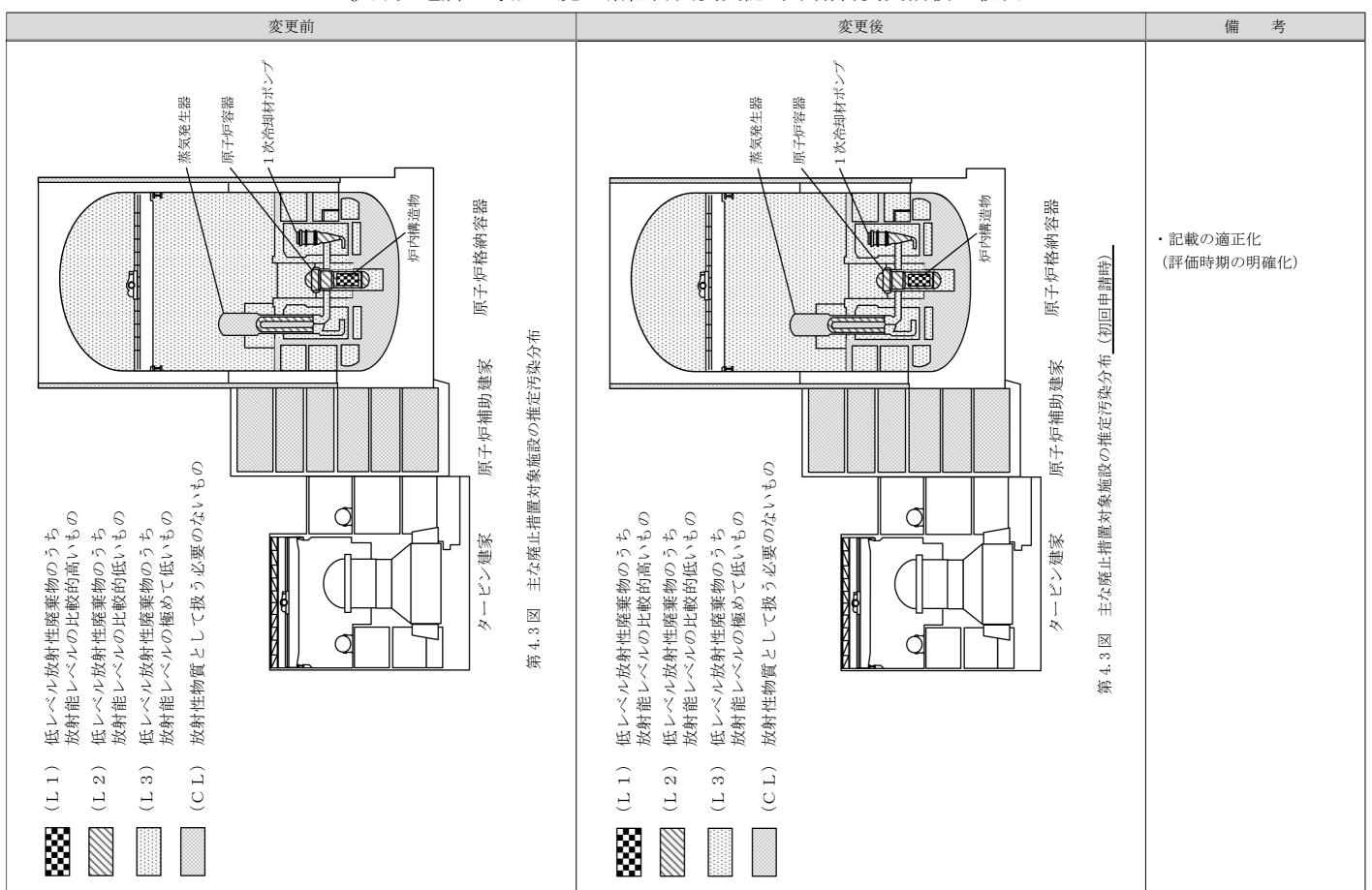
注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	前 ————————————————————————————————————		備 考				
第4.1表 原子炉設置許可及び原子炉	一設置変更許可の経緯(3/ <u>5</u>)	第4.1表 原子	第4.1表 原子炉設置許可及び原子炉設置変更許可の経緯 (3/ <u>6</u>)				
許可年月日 許可番号	備考	許可年月日	許可番号	備考	変更		
平成11年 1月26日 平成10・05・07 資第6号	1号,2号及び3号原子炉施設の変更 (3号炉使用済燃料貯蔵設備の貯蔵能力の変更) (1号炉出力分布調整用制御棒クラスタ駆動装置の撤去) (1号炉蒸気発生器保管庫の保管対象物の変更)	平成11年 1月26日	平成10·05·07資 第6号	1号,2号及び3号原子炉施設の変更 (3号炉使用済燃料貯蔵設備の貯蔵能力の変更) (1号炉出力分布調整用制御棒クラスタ駆動装置の撤去) (1号炉蒸気発生器保管庫の保管対象物の変更)			
平成12年 5月30日 平成11・08・17資第1号	1号及び2号原子炉施設の変更並びに1号,2号及び3号使用済燃料の処分の方法の変更 (2号炉出力分布調整用制御棒クラスタ駆動装置の撤去 (2号炉蒸気発生器の取替え) (1号炉蒸気発生器保管庫の1,2) 号炉共用化 (使用済燃料の再処理委託先確認方法の一部変更	平成12年 5月30日	平成11・08・17資第1号	1号及び2号原子炉施設の変更並びに1号,2号及び3号使用済燃料の処分の方法の変更 (2号炉出力分布調整用制御棒クラスタ駆動装置の撤去 (2号炉蒸気発生器の取替え) (1号炉蒸気発生器保管庫の1,2) 号炉共用化 (使用済燃料の再処理委託先確認方法の一部変更			
平成15年 8月13日 平成14・04・03原 第27号	1号,2号及び3号原子炉施設の変更 便 (燃料集合体最高燃焼度の変更) (1,2号炉制御棒クラスタの増設) 及び炉内構造物取替え (蒸気発生器保管庫の保管対象物の) 変更	平成15年 8月13日	平成14.04.03原第27号	1号,2号及び3号原子炉施設の変更 便 (燃料集合体最高燃焼度の変更) (1,2号炉制御棒クラスタの増設 及び炉内構造物取替え (蒸気発生器保管庫の保管対象物の 変更			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

	変更前				備考		
第4.1表 原子炉設置許可及び原子炉設置変更許可の経緯(4/ <u>5</u>)				第4.1表 原子烷	戸設置許可及び原子炉	F設置変更許可の経緯(4/ <u>6</u>)	・許可の経緯追加に伴う総数
許可年月日	許可番号	備考		許可年月日	許可番号	備考	変更
平成18年 3月28日	平成16・11・01原第10号			平成18年 3月28日	平成16・11・01原第10号		
平成19年 4月16日	平成18·10·20原 第1号	1,2号炉放射性廃棄物廃棄施設の一部の廃止 1号,2号及び3号原子炉施設の変更 (不燃性雑固体廃棄物の固形化処理の採用	_	平成19年 4月16日	平成18·10·20原 第1号	1,2号炉放射性廃棄物廃棄施設 の一部の廃止 1号,2号及び3号原子炉施設の変 更 (不燃性雑固体廃棄物の固形化処理 の採用	
平成22年 5月19日	平成21·10·20原 第30号	1号,2号及び3号原子炉施設の変 更 (1,2号炉蒸気発生器保管庫の 1,2,3号炉共用化並びに蒸気 発生器保管庫の保管対象物の変更)		平成22年 5月19日	平成21·10·20原 第30号	1号,2号及び3号原子炉施設の変更 更 (1,2号炉蒸気発生器保管庫の 1,2,3号炉共用化並びに蒸気 発生器保管庫の保管対象物の変更)	
平成27年 7月15日	原規規発 第1507151号	3 号原子炉施設の変更 核原料物質、核燃料物質及び原子 炉の規制に関する法律の改正に伴 う重大事故等対処に必要な施設及 び体制の整備等		平成27年 7月15日	原規規発 第1507151号	3 号原子炉施設の変更 核原料物質、核燃料物質及び原子 炉の規制に関する法律の改正に伴 う重大事故等対処に必要な施設及 び体制の整備等	
平成28年11月 2日	原規規発 第16110238号	1号,2号及び3号使用済燃料の処分の方法の変更 原子力発電における使用済燃料の再処理等の実施に関する法律の公布に伴う変更		平成28年11月 2日	原規規発 第16110238号	1号, 2号及び3号使用済燃料の処分の方法の変更 原子力発電における使用済燃料の 再処理等の実施に関する法律の公 布に伴う変更	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。


変更前				備 考 ・許可の経緯追加に伴う総数			
第4.1表 原-	子炉設置許可及び原	子炉設置変更許可の経緯(5/ <u>5</u>)	第4.1表 原-	第4.1表 原子炉設置許可及び原子炉設置変更許可の経緯 (5/ <u>6</u>)			
許可年月日	許可番号	備考	許可年月日	許可番号	備考	変更	
平成29年10月 4日	原規規発	3 号原子炉施設の変更	平成29年10月 4日	原規規発	3 号原子炉施設の変更		
	第1710043号	核原料物質、核燃料物質及び原子		第1710043号			
		炉の規制に関する法律の改正に伴			炉の規制に関する法律の改正に伴		
		う特定重大事故等対処施設の設置人			う特定重大事故等対処施設の設置人		
		[非常用ガスタービン発電機の設置]			[非常用ガスタービン発電機の設置]		
平成30年 6月27日	原規規発	3 号原子炉施設の変更	平成30年 6月27日	原規規発	3 号原子炉施設の変更		
	第1806272号	核原料物質、核燃料物質及び原子		第1806272号	核原料物質、核燃料物質及び原子		
		炉の規制に関する法律の改正に伴			炉の規制に関する法律の改正に伴		
		う所内常設直流電源設備 (3系統			う所内常設直流電源設備 (3系統		
		目)の設置			目)の設置		
平成30年12月12日	原規規発	3 号原子炉施設の変更	平成30年12月12日	原規規発	3 号原子炉施設の変更		
	第1812123号	実用発電用原子炉及びその附属施		第1812123号	(実用発電用原子炉及びその附属施		
		設の位置、構造及び設備の基準に			設の位置、構造及び設備の基準に		
		関する規則の改正に伴う地震時の			関する規則の改正に伴う地震時の		
		燃料被覆管の閉じ込め機能の維持			燃料被覆管の閉じ込め機能の維持		
		に係る設計方針の追加			に係る設計方針の追加		
平成31年 1月16日	原規規発	3号原子炉施設の変更	平成31年 1月16日	原規規発	3 号原子炉施設の変更		
	第1901165号	実用発電用原子炉及びその附属施		第1901165号	実用発電用原子炉及びその附属施		
		設の位置、構造及び設備の基準に			設の位置、構造及び設備の基準に		
		関する規則の改正に伴う「柏崎刈			関する規則の改正に伴う「柏崎刈		
		羽原子力発電所 6 号炉及び 7 号炉			羽原子力発電所 6 号炉及び 7 号炉		
		の新規制基準適合性審査を通じて			の新規制基準適合性審査を通じて		
		得られた技術的知見の反映」及び			得られた技術的知見の反映」及び		
		「内部溢水による管理区域外への			「内部溢水による管理区域外への		
		漏えいの防止」に係る事項の追加			【漏えいの防止」に係る事項の追加】		
令和 2年 1月29日	原規規発	3 号原子炉施設の変更	令和 2年 1月29日	原規規発	3 号原子炉施設の変更		
	第2001295号	実用発電用原子炉及びその附属施		第2001295号	実用発電用原子炉及びその附属施		
		設の位置、構造及び設備の基準に			設の位置、構造及び設備の基準に		
		関する規則の改正に伴う有毒ガス			関する規則の改正に伴う有毒ガス		
		の発生に対する防護方針の追加			しの発生に対する防護方針の追加		
令和 2年 9月16日	原規規発	3 号原子炉施設の変更	令和 2年 9月16日	原規規発	3 号原子炉施設の変更		
	第2009168号	【使用済燃料乾式貯蔵施設の設置 】		第2009168号	(使用済燃料乾式貯蔵施設の設置)		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

- 71

変更前	変更後	備考
	第4.1表 原子炉設置許可及び原子炉設置変更許可の経緯(6/6)	・許可の経緯追加
	許可年月日 許可番号 備 考	
	令和 5年 2月 8日 原規規発 3 号原子炉施設の変更	
	第2302083号 (使用済樹脂貯蔵タンクの増設)	
	令和 5年 5月24日 原規規発 3 号原子炉施設の変更	
	第2305244号 実用発電用原子炉及びその附属施	
	設の位置、構造及び設備の基準に	
	関する規則の解釈の改正に伴う震	
	源を特定せず策定する地震動に係	
	る標準的な応答スペクトルを考慮	
	した基準地震動の追加	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

五 廃止措置対象施設のうち解体の対象となる施設及びその解体の方法 廃止措置対象施設のうち解体の対象となる施設及びその解体の方法 の記述の一部を、伊方発電所1号炉の廃止措置計画変更認可申請書変 更前後比較表の変更後欄のとおり変更する。

伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表 考 変更前 変更後 五 廃止措置対象施設のうち解体の対象となる施設及びその解体の方法 五 廃止措置対象施設のうち解体の対象となる施設及びその解体の方法 1. 廃止措置対象施設のうち解体の対象となる施設 1. 廃止措置対象施設のうち解体の対象となる施設 解体の対象となる施設(以下「解体対象施設」という。)は、第4.2 解体の対象となる施設(以下「解体対象施設」という。)は、第4.2 表に示す廃止措置対象施設のうち,2号又は3号炉との共用施設並び 表に示す廃止措置対象施設のうち、2号及び3号炉との共用施設並び ・解体対象施設のうち1号及 に放射性物質による汚染のないことが確認された地下建家, 地下構造 に放射性物質による汚染のないことが確認された地下建家, 地下構造 び2号炉共用施設の整理の 物及び建家基礎を除くすべてである。 物及び建家基礎を除くすべてである。 変更 解体対象施設を第5.1表に、解体対象施設の配置図を第5.1図に示す。 解体対象施設を第5.1表に、解体対象施設の配置図を第5.1図に示す。 2. 廃止措置の基本方針 2. 廃止措置の基本方針 (8) 廃止措置対象施設のうち1号炉原子炉補助建家内に設置している2号炉の みとの共用設備については、2号炉の廃止措置に必要な機能に影響を与え ない措置を講じた上で、建家等解体撤去期間開始までに共用を取止め、1 号炉原子炉補助建家内に解体対象施設以外は残存しないようにする。 (9) 労働災害防止対策として、高所作業対策、石綿等有害物対策、感電防止 (8) 労働災害防止対策として、高所作業対策、石綿等有害物対策、感電防止 ・記載の適正化 対策、粉じん障害対策、酸欠防止対策、騒音防止対策等を講じる。 対策、粉じん障害対策、酸欠防止対策、騒音防止対策等を講じる。 (番号の繰り上げ) 3. 廃止措置の実施区分 3. 廃止措置の実施区分 廃止措置は、廃止措置期間全体を4段階(解体工事準備期間、原子 廃止措置は、廃止措置期間全体を4段階(解体工事準備期間、原子 炉領域周辺設備解体撤去期間,原子炉領域設備等解体撤去期間,建家 炉領域周辺設備解体撤去期間,原子炉領域設備等解体撤去期間,建家 等解体撤去期間) に区分し、安全性を確保しつつ次の段階へ進むため 等解体撤去期間)に区分し、安全性を確保しつつ次の段階へ進むため の準備をしながら確実に進める。 の準備をしながら確実に進める。 廃止措置の主な手順を第5.2図に示す。 廃止措置の主な手順を第5.2図に示す。 今回の申請では、解体工事準備期間に行う具体的事項について記載 本廃止措置計画では、解体工事準備期間及び原子炉領域周辺設備解 • 原子炉領域周辺設備解体撤 する。原子炉領域周辺設備解体撤去期間以降に行う具体的事項につい 体撤去期間に行う具体的事項について示す。原子炉領域設備等解体撤 去期間の廃止措置計画の具 ては、解体工事準備期間に実施する汚染状況の調査結果や管理区域外 去期間以降に行う具体的事項については,解体工事準備期間及び原子 体化に伴う変更 の設備の解体撤去経験等を踏まえ、解体撤去の手順及び工法、放射性 炉領域周辺設備解体撤去期間に実施する汚染状況の調査結果や管理区 物質の処理及び管理方法等について検討を進め、原子炉領域周辺設備 域内外の設備の解体撤去経験等を踏まえ、解体撤去の手順及び工法、 放射性物質の処理及び管理方法等について検討を進め,原子炉領域設 解体撤去期間に入るまでに廃止措置計画に反映し変更の認可を受ける。 備等解体撤去期間に入るまでに廃止措置計画に反映し変更の認可を受 ける。

4. 解体の方法

(2) 原子炉領域周辺設備解体撤去期間

原子炉領域周辺設備解体撤去期間では、汚染状況の調査後に安全確保のための機能に影響を与えない範囲内で、供用を終了した施設のうち、原子炉領域設備以外の管理区域内設備の解体撤去に着手する。

変更前

解体撤去は、熱的切断又は機械的切断により行う。具体的な工法 は、解体する設備の構造及び汚染状況、解体に使用する工具の使用 条件、解体に伴い発生する粉じんの影響等を考慮し選定する。ま た、解体工事準備期間に引き続き、放射能レベルの比較的高い原子 炉領域設備の安全貯蔵、管理区域外の設備の解体撤去、核燃料物質 による汚染の除去及び放射性廃棄物の処理処分を実施する。

4. 解体の方法

(2) 原子炉領域周辺設備解体撤去期間

原子炉領域周辺設備解体撤去期間では,汚染状況の調査後に安全 確保のための機能に影響を与えない範囲内で,供用を終了した施設 のうち,原子炉領域設備以外の管理区域内設備の解体撤去に着手す る。

変更後

原子炉領域周辺設備の解体撤去は、解体時に追加的な汚染が付着しないよう、解体撤去範囲に放射性廃棄物でない廃棄物と判断できる設備がある場合は、当該設備を先行して解体撤去し、その後、解体工事準備期間に実施した汚染状況の調査結果による放射能レベル区分に基づき、放射性物質として扱う必要のないもの、放射性固体廃棄物の順に、放射能レベルの低いものから解体撤去することを基本とする。

また、解体撤去物のうち、放射性物質として扱う必要のないものとして処理するか放射性固体廃棄物とするかを判断する前段階のもの(以下「解体保管物」という。)を保管するエリア(以下「保管エリア」という。)及び解体保管物の処理を行うエリア(以下、保管エリアと併せて「保管エリア等」という。)を確保するために、原子炉格納容器及び原子炉補助建家内の保管エリア等の設置予定場所にある設備を先行して解体撤去し、その後、保管エリア等として利用する。保管エリア等を確保した後、その他の原子炉領域周辺設備の解体撤去を進める。解体保管物は、処理を行うことにより放射性物質として扱う必要のないものとして保管エリアから搬出し、再生利用に供するように努める。

解体撤去は、熱的切断又は機械的切断により行う。具体的な工法は、解体する設備の構造及び汚染状況、解体に使用する工具の使用条件、解体に伴い発生する放射性粉じん<u>(以下「粒子状物質」という。)</u>の影響等を考慮し選定する。また、解体工事準備期間に引き続き、放射能レベルの比較的高い原子炉領域設備の安全貯蔵、管理区域外の設備の解体撤去、核燃料物質による汚染の除去及び放射性廃棄物の処理処分を実施する。

原子炉領域周辺設備解体撤去期間に実施する工事等に係る着手要件及び完了要件を第5.3表に、原子炉領域周辺設備解体撤去期間における汚染の除去方法を第9.2表に示す。

・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

考

- ・記載の適正化 (略称の追加)
- ・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更

(3) 原子炉領域設備等解体撤去期間 原子炉領域設備等解体撤去期間では、汚染状況の調査及び安全貯 蔵終了後、放射能レベルの比較的高い原子炉領域設備の解体撤去を (3) 原子炉領域設備等解体撤去期間では、汚染状況の調査及び安全貯 蔵終了後、放射能レベルの比較的高い原子炉領域設備の解体撤去を
実施する。解体撤去は、熱的切断又は機械的切断により行う。具体的な工法は、解体する機能や制造及び污染状況、解体に使用する工具の使用条件、解体に機能を超足の形態等等も悪し速定する。 特に放射能レベルの止め的高い原子近端液設備の解体においては、水中での切断、液層操作による切断等、酸はく低減を含薬した工法を提用する。また、原子炉傾坡設備等解体能力関固以前に常差した設備の解体撤去、複燃料物質による汚染の除去及び放射性流来物の処理処分を引き続き実施する。 「他の必要性が変更による汚染の除去及び放射性流来物の処理処分を引き続き実施する。」 「他の必要性が変更による形容の除去及び放射性流来物の処理処分を引き続き実施する。」 「他の必要性が変更による形容の除去及び放射性流来物の処理処分を引き続き実施する。」 「他の必要性が変更による形容の除去及び放射性流来が必要性が変更による形容の除去及び放射性を必要性が変更による形容の除去及び放射性を必要性が必要性が変更による形容の除去及び放射性を変更的の影響を表した。 「他の必要性が変更による形容の除去及び放射性流来物の処理処分を引き続き実施する。」 「他の必要性が変更による形容の除去及び放射性が変更が変更が変更が変更が変更が変更が変更が変更が変更が変更が変更が変更が変更が

変更前				7	備 考	
	第5.1表 解体效	対象施設(1/ <u>2</u>)		第5.1表 解体	・解体対象施設のうち1号及	
施設区分	設備等の区分	設備(建家)名称**1	施設区分	設備等の区分	設備(建家)名称*1	び2号炉共用施設の整理の
発電用原子 炉施設の一 般構造	その他の主要な構造	原子炉補助建家**2	発電用原子 炉施設の一 般構造	その他の主要な構造	原子炉補助建家**2	変更に伴う総数変更
	炉心	炉心支持構造物		炉心	炉心支持構造物	
	燃料体	燃料集合体**3		燃料体	燃料集合体**3	
百乙烷未炔	原子炉容器	原子炉容器	原子炉本体	原子炉容器	原子炉容器	
原子炉本体 🖁		原子炉容器周囲のコンクリート壁	原于炉本件		原子炉容器周囲のコンクリート壁	
	放射線遮蔽体	原子炉格納容器外周のコンクリート 壁*2		放射線遮蔽体	原子炉格納容器外周のコンクリート 壁*2	
		燃料取替装置**4			燃料取替装置**4	
核燃料物質	核燃料物質取扱設	燃料移送装置**4	核燃料物質	核燃料物質取扱設		
の取扱施設	備		の取扱施設			
及び貯蔵施	核燃料物質貯蔵設	新燃料貯蔵設備	及び貯蔵施		使用済燃料輸送容器※5	・解体対象施設のうち1号及
設	 備	使用済燃料貯蔵設備*4	設	核燃料物質貯蔵設 備	新燃料貯蔵設備	び2号炉共用施設の整理の
	1 次冷却設備	蒸気発生器			使用済燃料貯蔵設備*4	変更
		1 次冷却材ポンプ		1 次冷却設備	蒸気発生器	
		1 次冷却材管			1 次冷却材ポンプ	
		加圧器			1 次冷却材管	
	2 次冷却設備	タービン			加圧器	
原子炉冷却		高圧注入系		2次冷却設備	タービン	
系統施設	非常用冷却設備	低圧注入系	原子炉冷却	非常用冷却設備	高圧注入系	
		蓄圧注入系	系統施設		低圧注入系	
		化学・体積制御設備			蓄圧注入系	
	その他の主要な事	余熱除去設備			化学·体積制御設備	
	項	タービンバイパス設備		その他の主要な事	余熱除去設備	
		主蒸気安全弁及び大気放出弁		項	タービンバイパス設備	
					主蒸気安全弁及び大気放出弁	
※2:放射性 造物及※3:燃料集※4:2号<u>又</u>	物質による汚染のない び建家基礎は本表から 合体は,再処理事業者 は3号炉との共用施詞	れている建家(タービン建家)を含む。 いことが確認された地下建家、地下構除く。 立又は加工事業者へ譲り渡す。 设は解体対象施設から除く <u>ものとし、</u> 本は2号炉の廃止措置計画にて行う。	※2:放射性 造物及※3:燃料集※4:2号及	物質による汚染のない び建家基礎は本表から 合体は,再処理事業者	育又は加工事業者へ譲り渡す。 なは解体対象施設から除く <u>。</u>	

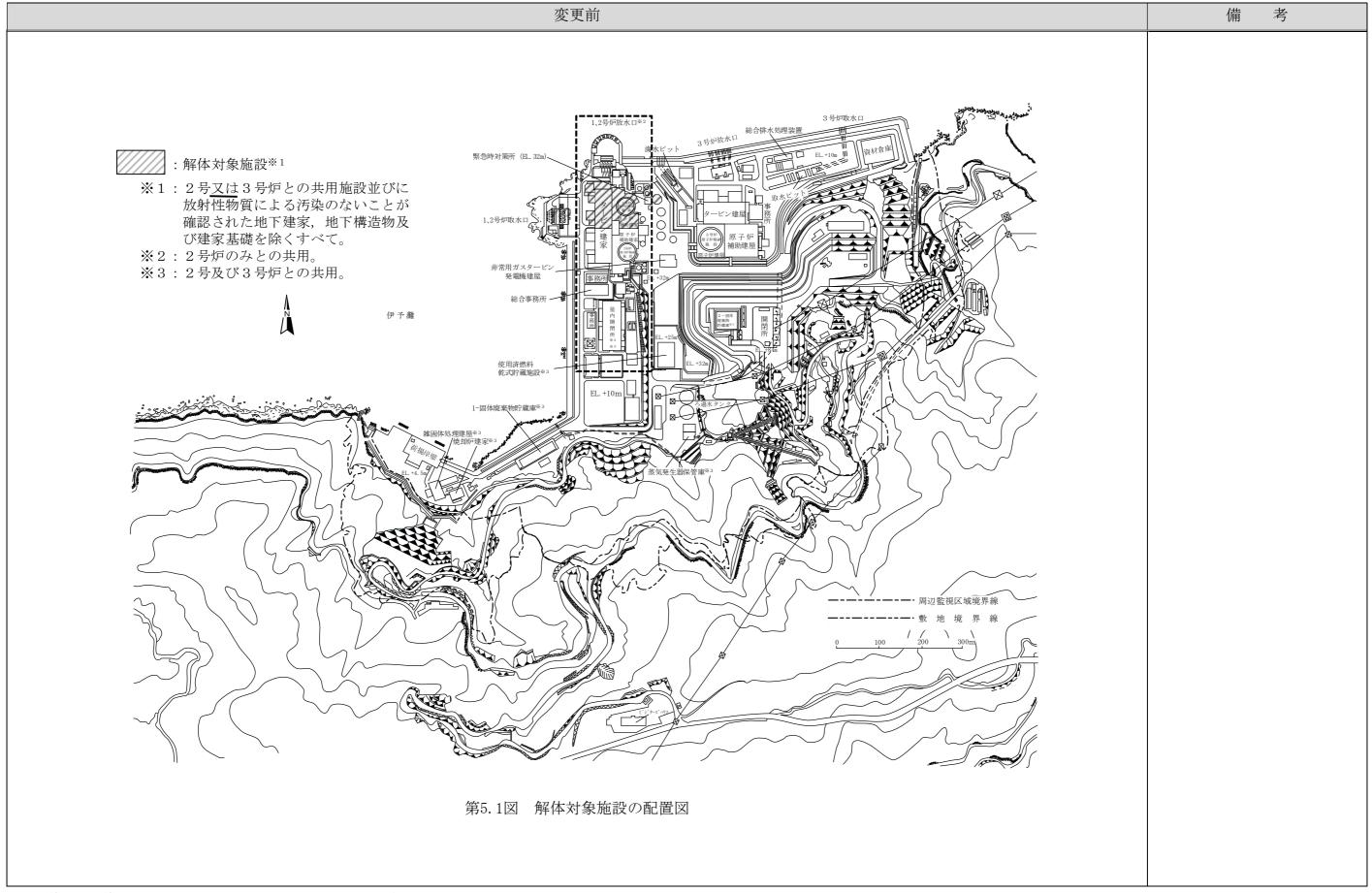
⁻⁻⁻注)下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

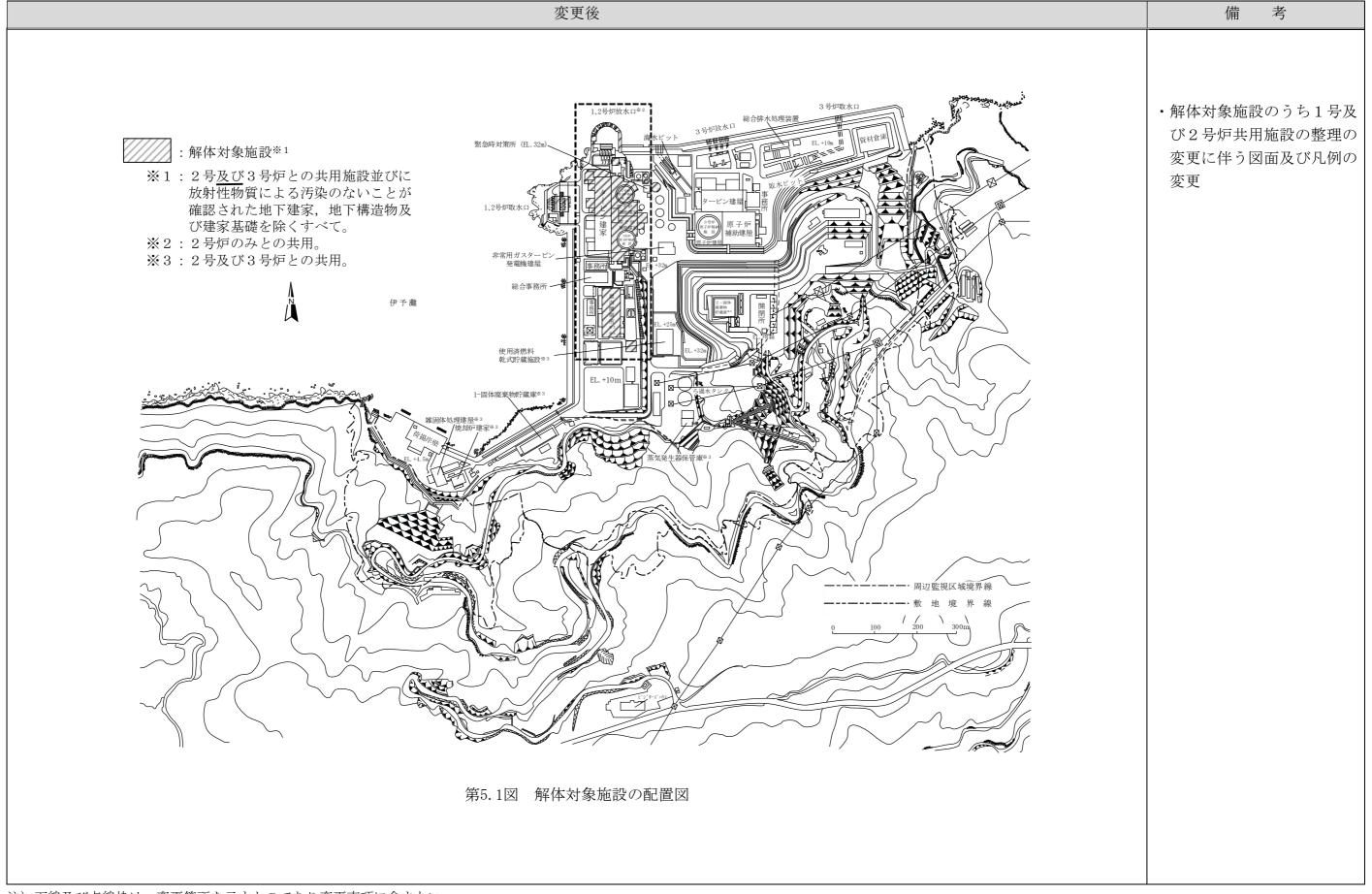
変更前					備 考	
第5.1表 解体対象施設 (2/ <u>2</u>)				第5.1表 解体	・解体対象施設のうち1号及	
施設区分	設備等の区分	設備(建家)名称**1	施設区	分 設備等の区分	設備(建家)名称*1	び2号炉共用施設の整理の
	⇒1 \ 1+	核計装		⇒1 / 1+	核計装	変更に伴う総数変更
	計装	その他の主要な計装		計装	その他の主要な計装	
	克 人口类同时	原子炉停止回路		☆ 人/□──□ □ □	原子炉停止回路	
計測制御系	安全保護回路	その他の主要な安全保護回路	=1 Nu th 1 //	安全保護回路	その他の主要な安全保護回路	
統施設	#17/#1=11/#	制御材	計測制御		制御材	
	制御設備	制御材駆動設備	統施設	制御設備	制御材駆動設備	
	その他の主要な事	1 次冷却材温度制御設備		フの仲の子悪れ事	1 次冷却材温度制御設備	
	項	加圧器制御設備		その他の主要な事	加圧器制御設備	
北色业成态	気体廃棄物の廃棄			項 	中央制御室**5	・解体対象施設のうち1号及
放射性廃棄 物の廃棄施	設備	補助建家排気筒		与从成充栅 (1) 成态	ガス圧縮装置※5	び2号炉共用施設の整理の
初の発来心	液体廃棄物の廃棄	ほう酸回収系 ^{※<u>4</u>}		気体廃棄物の廃棄 設備	ガス減衰タンク ^{※5}	変更
	設備	廃液処理系**4		以用	補助建家排気筒	
	屋内管理用の主要	 放射線監視設備 ^{* 4}	放射性原	(ほう酸回収系 ^{※5}	
放射線管理			物の廃棄			
施設			設	設備	洗浄排水処理系※4※5	
	な設備	排水モニタ**4			放水口※5	
	構造	原子炉格納容器※2		固体廃棄物の廃棄	ドラム詰装置 ^{**4*5}	
原子炉格納		原子炉格納容器空気再循環設備原子炉格納容器換気設備		<u>設備</u>	<u>ベイラ※4※5</u> /# 四本##に中共 ね、4※4※5	
施設	その他の主要な事項	アニュラス空気再循環設備			使用済樹脂貯蔵タンク※4※5	
		原子炉格納容器スプレイ設備	 放射線管	屋内管理用の主要 管理 な設備	放射線監視設備 ^{※4<u>※5</u>} 放射線管理設備 ^{※4※5}	
その他発電		ディーゼル発電機	放射線電	本	+ 	・記載の適正化
用原子炉の			/ / / / / / / / / / / / / / / / / / /	な設備	排水モニタ*5	・記載の過止化 (ディーゼル発電機等を次頁
附属施設		<u>蓄電池</u> — — — — — — — — — — — — — — — — — — —		構造	原子炉格納容器**2	へ移動)
					原子炉格納容器空気再循環設備	19 30)
			原子炉棉	§納│ │その他の主要な事	***************************************	
			施設	項	アニュラス空気再循環設備	
					原子炉格納容器スプレイ設備	
※2:放射性 造物及	物質による汚染のない び建家基礎は本表から	れている建家 (タービン建家)を含む。 いことが確認された地下建家,地下構 ら除く。 又は加工事業者へ譲り渡す。	※2:放 造	射性物質による汚染のな 物及び建家基礎は本表か	されている建家 (タービン建家)を含む。 いことが確認された地下建家,地下構ら除く。 者又は加工事業者へ譲り渡す。	
		スは加工事業有、磁り扱り。 設は解体対象施設から除く <u>ものとし,</u>		, , , , , , , , , , , , , , , , , , , ,	設は解体対象施設から除く <u>。</u>	・解体対象施設のうち1号及
		体は2号炉の廃止措置計画にて行う。		号炉のみとの共用施設はf		び2号炉共用施設の整理の 変更

⁻⁻⁻注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	<u>第5.1表 解体対象施設(3/3)</u>	・記載の適正化
	<u>施設区分</u> <u>設備等の区分</u> <u>設備(建家)名称**1</u>	(ディーゼル発電機等を前頁
	<u>受電系統*4**5</u>	より移動)
	その他発電 非常用電源設備 ディーゼル発電機	・解体対象施設のうち1号及
	用原子炉の 蓄電池	び2号炉共用施設の整理の
	附属施設 その他の主要な事 海水淡水化装置**5	変更
	※1:記載されている設備が設置されている建家 (タービン建家)を含む。	
	※2:放射性物質による汚染のないことが確認された地下建家,地下構	
	造物及び建家基礎は本表から除く。 ※3:燃料集合体は,再処理事業者又は加工事業者へ譲り渡す。	
	※4:2号及び3号炉との共用施設は解体対象施設から除く。	
	※5:2号炉のみとの共用施設は解体対象施設に含む。	
注)下線及び占線機は、亦再築所を示すたのでもり亦再車項に含まない		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。


変更前					変更後			備考	
実施する工事等に係る着手要件及び完了要件	完了要件	御の 理を を を を を を を を を を を を を を	管理区域外 の解体対象 散設を全て と。(原子 の領域周辺 お舗解体蔵 解開収 を))完了要件	完了要件	管理区域 と を を を を を の に を の に め の に め の が が め め が が め が が が が が が が が が が が	衛 御 を を を を を を の の の の の の の の の の の の の		
	安全確保対策	・試料採取時には汚染 拡大防止対策を講じ る。 ・試料採取及び測定場 所の状況に応じて遠 隔操作装置の導入及 び防護具の着用等の 被ばく低減対策を講 じる。	 ・必要に応じて局所排 風機の設置,粉じん 等の拡散防止措置を 講じる。 ・火気使用作業前に は、周辺に可燃物が ないことを確認し, ないことを確認し, 不燃シート等を用い て養生する。 		る着手要件及び完了要件安全着手要件及び完了要件を発達を表する。	・全確保対策 こは汚染拡大防止対策を で関定場所の状況に応じ 装置の導入及び防護具の ずく低減対策を講じる。 数防止措置を講じる。 及び重量物の取扱いによ で対する安全対策とし でがする安全対策とし でがする安全対策とし でがする安全対策とし でがする安全対策とし で対する安全対策とし でがする安全対策とし でがする安全対策とし で対する安全対策とし でがする安全対策とし で対する安全対策とし で対する安全対策とし で対する安全対策とし で対する安全対策とし で対する安全対策とし でがする安全対策とし でがする安全対策とし でがする安全対策とし で対する安全対策とし でがする安全対策とし でがする安全が、では でがする安全が でがするを表現する安全が でがするを表現が でがするを表現が でがするを表現が でがする安全が でがするなど でがするを表現が でがするなど でがするを表現が でがりまるを表現が でがりるを表現が でがりるといいが でがりるといいが でがするを表現が でがするを表現が でがするを表現が でがりるといいが でがりるといいが でがするといいが でが	・記載の適正化 (記載の充実)		
	凇	放射化されたものに 生成核種の同定及び 度分布を評価するた 対象施設から試料を が築た関して、機器 外部からッ線の測定	備を解体撤去 分解・取り外 は機械的切断 気中での切 。	第5.2表 解体工事準備期間に実施する工事等に係る着手要件及び完了要件 		・試料採取時 講じる。 ・試料採取及 で遠隔操作 着用等の被	・必要に応じて局所 じん等の拡散防」 ・水災、爆発及び重 る人為事象に対 て、難燃性の資料 ガスを使用する 対スを使用する がみを使用する がみを使用する がみを使用する がみを使用する がる がるを使用する がまる がまる がまる がまる がまる がまる がまる がまる がまる がま		
	義	・残存する放射化されたものに 関して、生成核種の同定及び 放射能濃度分布を評価するた め、解体対象施設から試料を 採取する。 ・二次的な汚染に関して、機器 及び配管外部からッ線の測定 を行う。	・管理区域外の設備を解体撤去する。 ・工具等を用いた分解・取り外 し, 熱的切断又は機械的切断 の工法により, 気中での切 断・破砕を行う。		類	、残存する放射化されたものに関して、生成核種の同定及び放射能濃度分布を評価するため、解体対象施設から試料を採取を設めら試料を採取する。 二次的な汚染に関して、機器及び配管外部からッ線の測定を行う。	管理区域外の設備を 解体撤去する。 工具等を用いた分 解・取り外し、熱的 切断又は機械的切断 の工法により、気中 での切断・破砕を行う。		
第5.2表 解体工事準備期間に	着手要件	解とといる。記録をいる。	女後 後 を と と と と に と に に に に に に に に に に に に に			着手要件	計 を ない ない ない ない ない ない ない ない ない いっぱん はい いっぱん いっぱん いっぱん いっぱん いっぱん いっぱん いっぱん いっぱ	説 終 る	
	主要設備名称	管理区域内の解体の対象となる 設備・建家	管理区域外の解 体の対象となる 設備・建家		主要設備名称 着	管理区域内の 廃山 解体の対象と 階に なる設備・建 と。 家	管理区域外の 対象施 解体の対象と 供用を なる設備・建 してい 家		
	場所	原 谷 本 名 本 名 本 名 本 名 本 名 本 名 本 名 本 名 本 名 本	管理区域外		場所	原 を を を を を を を を を を を を を を を を を を を	章 卒 国区域		
	手順上の 名称	の調査を表現し	管理区域 外設備の 解体 数法		手順上の 名務	汚染状況の調査	管理区域 外設備の 解体散去		


注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備考
	完了要件 の解体対象 加設を全て を表するに を、(原子 が関域設備 等解体機法 増間以降)	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更
	原子炉領域周辺設備解体権法期間に実施する工事等に係る着手要件及び完了要件 (2/2) - 要設備名称 着手要件 横き 横 要 安全確保対策 (2/2) - (4/2) (4/	
	 ・ 管理区域外の設備を 解体撤去する。 ・ 工具等を用いた分 解・取り外し、熱的 切断又は機械的切断 の工法により、気中 での切断・破砕を行 う。 	
	込設備解体機対象施設が大のるとと。と。	
	(新) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	
	(世間) は (本) を (本)	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

六 性能維持施設

性能維持施設の記述の一部を、伊方発電所1号炉の廃止措置計画変 更認可申請書変更前後比較表の変更後欄のとおり変更する。

六 性能維持施設

- 1. 性能維持施設
 - (5) 換気設備については、管理区域を解除するまでの期間、使用済燃料の貯蔵管理、放射性廃棄物の処理、放射線業務従事者の被ばく低減等を考慮して、空気の浄化が必要な場合並びに解体撤去に伴い<u>放射性粉じん</u>が発生する可能性のある区域で発電用原子炉施設外への放出の防止及び他区域への移行の防止のために必要な場合は、建家内の換気機能及び性能を維持管理する。
- 六 性能維持施設
- 1. 性能維持施設

- (5) 換気設備については、管理区域を解除するまでの期間、使用済燃料の貯蔵管理、放射性廃棄物の処理、放射線業務従事者の被ばく低減等を考慮して、空気の浄化が必要な場合並びに解体撤去に伴い<u>粒子状物質</u>が発生する可能性のある区域で発電用原子炉施設外への放出の防止及び他区域への移行の防止のために必要な場合は、建家内の換気機能及び性能を維持管理する。
- 記載の適正化(略称の反映)

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

八 核燃料物質の管理及び譲渡し

核燃料物質の管理及び譲渡しの記述の一部を,伊方発電所1号炉の 廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更 する。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

九 核燃料物質による汚染の除去

核燃料物質による汚染の除去の記述の一部を,伊方発電所1号炉の 廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更 する。

九 核燃料物質による汚染の除去

- 1. 除染の方針
 - (1) 解体対象施設の汚染の特徴

解体対象施設の一部は、放射化汚染又は二次的な汚染によって汚 染されている。

このうち,放射化汚染については,放射能レベルの比較的高い原 子炉領域設備等を対象に時間的減衰を図る。機器, 配管等の内面に 付着し残存している二次的な汚染については、時間的減衰を図ると ともに効果的な除染を行うことで,これらの設備を解体撤去する際 の放射線業務従事者の放射線被ばくを合理的に達成できる限り低く する。

(2) 汚染分布の評価

主な廃止措置対象施設の汚染の推定分布については、第4.3 図に 示すとおりであるが, 汚染状況の調査により, 解体工事準備期間の 除染結果も踏まえた評価の見直しを行う。

九 核燃料物質による汚染の除去

伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表

- 1. 除染の方針
 - (1) 解体対象施設の汚染の特徴

解体対象施設の一部は、放射化汚染又は二次的な汚染によって汚 染されている。

このうち,放射化汚染については,放射能レベルの比較的高い原 子炉領域設備等を対象に時間的減衰を図る。機器,配管等の内面に 付着し残存している二次的な汚染については、時間的減衰を図ると ともに効果的な除染を行うことで,これらの設備を解体撤去する際 の放射線業務従事者の放射線被ばくを合理的に達成できる限り低く するとともに、解体撤去物の放射能レベルを低減する。

(2) 汚染分布の評価

初回申請において評価した主な廃止措置対象施設の汚染の推定分 布については、第4.3図に示すとおりである。

解体工事準備期間の汚染状況の調査により評価した主な廃止措置 対象施設の汚染の推定分布については、第9.1図に示すとおりであ る。

- 原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更
- ・記載の適正化 (評価時期の明確化)
- 原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更

変更前	変更後	備 考
	完了要件 	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更
	(領域周辺設備解体撤去期間における汚染の除去方法 地大学の実施に当たっては、施設外への放射 生医域内設備の を対象業務従事 の被ばく低減ス を対象業務で重 の数ばく低減ス を対象を行う。 に、放射線遮蔽、遠隔操作装置の導入、立 を対象を行う。 でマスク等の防護具を用いる。 に、表情線量と比較し改善策を検討する等 し、マスク等の防護具を用いる。 に、表情線量と比較し改善策を検討する等 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 に、、被ばく低減に努める。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、マスク等の防護具を用いる。 し、実績線量と比較し改善策を検討する等 して、被ばく低減に努める。 して、被ばく低減に努める。 して、機びく低減に努める。 して、機ばく低減に努める。 して、機ばく低減に努める。 ・線量当量率が著しく変動するおそれがある。 事象に対する安全対策として、難燃性の管 事会に対する安全対策として、難燃性の管 を持つが使用、可燃性がスを使用する場合の 管理の徹底、重量物に適合した場重設備の 使用等の指置を講じるとともに、早期の復旧に努め を を を を を を を を を を を を を	
	原子炉領域周辺設備 - 管理区域内設備の - 管理区域内設備の 対解体散去等におけ が射線業務従事 対解体散去等の放 対解体散去等の対 対解体散去等の対 対解体数 大場合には、 一 に組み合うでは、 一 に組み合うなでで が 1 に を	
	2.6	
	主要設備名称 管理区域内設備	
	場。原助及炉器で建び格内で家原統	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

十 核燃料物質又は核燃料物質によって汚染された物の廃棄

核燃料物質又は核燃料物質によって汚染された物の廃棄の記述の一部を,伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表 考 変更前 変更後 十 核燃料物質又は核燃料物質によって汚染された物の廃棄 十 核燃料物質又は核燃料物質によって汚染された物の廃棄 1. 放射性気体廃棄物の廃棄 1. 放射性気体廃棄物の廃棄 1.1 放射性気体廃棄物の種類及び処理の方法 1.1 放射性気体廃棄物の種類及び処理の方法 1.1.2 廃止措置期間中に発生する放射性気体廃棄物の種類及び処理の 1.1.2 廃止措置期間中に発生する放射性気体廃棄物の種類及び処理の 方法 (2) 原子炉領域周辺設備解体撤去期間以降 (2) 原子炉領域周辺設備解体撤去期間 • 原子炉領域周辺設備解体撤 原子炉領域周辺設備解体撤去期間以降に発生する放射性気体廃 原子炉領域周辺設備解体撤去期間に発生する放射性気体廃棄物 去期間の廃止措置計画の具 棄物の種類は、主に汚染された機器の切断等に伴って発生する放 の種類は、主に換気系からの排気及び管理区域内設備の解体撤去 体化に伴う変更 射性粉じん等の粒子状放射性物質が想定される。 に伴って発生する粒子状物質である。 この期間に発生する放射性気体廃棄物の処理の方法は,解体工 この期間に発生する放射性気体廃棄物は,原子炉運転中に発生 事準備期間に行う汚染状況の調査結果を踏まえ,原子炉領域周辺 した放射性気体廃棄物と同様に廃棄物の種類、性状等に応じて処 設備解体撤去期間に入るまでに廃止措置計画の変更の認可を受け 理を行う。 原子炉領域周辺設備解体撤去期間の放射性気体廃棄物の処理フ る。 ローを第10.2図に示す。 (3) 原子炉領域設備等解体撤去期間以降 原子炉領域設備等解体撤去期間以降に発生する放射性気体廃棄 物の種類及び処理については, 汚染状況の調査結果, 解体撤去の 手順及び工法等を踏まえ,原子炉領域設備等解体撤去期間に入る までに廃止措置計画の変更の認可を受ける。

- 1.2 放射性気体廃棄物の推定放出量
- (2) 原子炉領域周辺設備解体撤去期間以降

原子炉領域周辺設備解体撤去期間以降における放射性気体廃棄物 の推定放出量は、解体工事準備期間に行う汚染状況の調査結果を踏 まえ、原子炉領域周辺設備解体撤去期間に入るまでに廃止措置計画 の変更の認可を受ける。

1.2 放射性気体廃棄物の推定放出量

(2) 原子炉領域周辺設備解体撤去期間

原子炉領域周辺設備解体撤去期間に発生する主な放射性気体廃棄 物の種類は、管理区域内設備の解体撤去に伴って発生する粒子状物 質である。

原子炉領域周辺設備解体撤去期間は、放射性気体廃棄物の放出に 当たり、放射性廃棄物処理機能を維持することから、粒子状物質の 年間放出量は十分少なくなる。

(3) 原子炉領域設備等解体撤去期間以降

原子炉領域設備等解体撤去期間以降における放射性気体廃棄物の 推定放出量は、汚染状況の調査結果、解体撤去の手順及び工法等を 踏まえ、原子炉領域設備等解体撤去期間に入るまでに廃止措置計画 の変更の認可を受ける。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考		
放射性液体廃棄物の廃棄	2. 放射性液体廃棄物の廃棄			
1 放射性液体廃棄物の種類及び処理の方法	2.1 放射性液体廃棄物の種類及び処理の方法			
1.2 廃止措置期間中に発生する放射性液体廃棄物の種類及び処理の	2.1.2 廃止措置期間中に発生する放射性液体廃棄物の種類及び処理の			
方法	方法			
(1) 解体工事準備期間	(1) 解体工事準備期間			
解体工事準備期間に発生する放射性液体廃棄物の種類は,原子	解体工事準備期間に発生する放射性液体廃棄物の種類は,原子			
炉運転中と同様な廃棄物が想定される。	炉運転中と同様な廃棄物が想定される。			
この期間に発生する放射性液体廃棄物は,原子炉運転中に発生	この期間に発生する放射性液体廃棄物は、原子炉運転中に発生			
した放射性液体廃棄物と同様に廃棄物の種類,性状等に応じて処	した放射性液体廃棄物と同様に廃棄物の種類、性状等に応じて処			
理を行う。	理を行う。			
解体工事準備期間の放射性液体廃棄物の処理フローを第 10.2 図	解体工事準備期間の放射性液体廃棄物の処理フローを第 10.3 図	・記載の適正化		
に示す。	に示す。	(図番号の繰り下げ)		
(2) 原子炉領域周辺設備解体撤去期間以降	(2) 原子炉領域周辺設備解体撤去期間	原子炉領域周辺設備解		
原子炉領域周辺設備解体撤去期間 <u>以降</u> に発生する放射性液体廃	原子炉領域周辺設備解体撤去期間に発生する放射性液体廃棄物	去期間の廃止措置計画		
棄物の種類及び処理の方法は、解体工事準備期間に行う汚染状況	の種類は原子炉運転中と同様な廃棄物が想定される。	体化に伴う変更		
の調査結果を踏まえ、原子炉領域周辺設備解体撤去期間に入るま	この期間に発生する放射性液体廃棄物は,原子炉運転中に発生			
でに廃止措置計画の変更の認可を受ける。	した放射性液体廃棄物と同様に廃棄物の種類、性状等に応じて処			
	<u>理を行う。</u>			
	原子炉領域周辺設備解体撤去期間の放射性液体廃棄物の処理フ			
	<u>ローを第 10.4 図に示す。</u>			
	(3) 原子炉領域設備等解体撤去期間以降			
	原子炉領域設備等解体撤去期間以降に発生する放射性液体廃棄			
	物の種類及び処理の方法は、汚染状況の調査結果、解体撤去の手			
	順及び工法等を踏まえ、原子炉領域設備等解体撤去期間に入るま			
	でに廃止措置計画の変更の認可を受ける。			

2.2 放射性液体廃棄物の推定放出量

(2) 原子炉領域周辺設備解体撤去期間以降

原子炉領域周辺設備解体撤去期間<u>以降における放射性液体廃棄物</u>の推定放出量は,解体工事準備期間に行う汚染状況の調査結果を踏まえ,原子炉領域周辺設備解体撤去期間に入るまでに廃止措置計画の変更の認可を受ける。

変更前

- 2.3 放射性液体廃棄物の管理方法
- (1) 解体工事準備期間

解体工事準備期間は、放射性液体廃棄物を適切に処理するため に、放出量を合理的に達成できる限り低くするとともに、放射性廃 棄物処理機能等の必要な機能を有する設備を維持管理する。

また、放射性液体廃棄物の放出に際しては、放出前のタンクにおいて放射性物質濃度の測定等を行い、排水中の放射性物質濃度が、「線量限度等を定める告示」に定める周辺監視区域外における水中の濃度限度を超えないようにするとともに、放射性液体廃棄物の年間放出量から、「線量目標値に関する指針」に基づき、放射性液体廃棄物の放出管理目標値を第 10.2表のとおり設定し、これを超えないように努める。排水中の放射性物質の濃度は、排水モニタによって監視する。

原子炉格納容器冷却材ドレン及び原子炉補助建家冷却材ドレンについては,これらに含まれるほう酸を回収し再使用する必要がないことから,廃液処理系にて処理を行う。

放射性液体廃棄物の処理及び管理に係る必要な措置を保安規定に 定めて管理する。 2.2 放射性液体廃棄物の推定放出量

(2) 原子炉領域周辺設備解体撤去期間

原子炉領域周辺設備解体撤去期間は、設備の維持管理や管理区域 内設備の解体撤去等に伴う設備の残水等が発生するが、液体廃棄物 の廃棄設備等の必要な設備について機能を維持すること及び海水中 における放射性物質の濃度を原子炉運転中と同等に維持するように 1号及び2号炉の運転終了と1号炉海水ポンプの廃止に伴う復水器 冷却水等の量の減少を考慮した放出管理目標値を設定することか ら、放射性液体廃棄物の年間放出量は、原子炉設置許可申請書に記 載の年間放出量を超えないと評価できる。

変更後

(3) 原子炉領域設備等解体撤去期間以降

原子炉領域設備等解体撤去期間以降における放射性液体廃棄物の 年間放出量は、汚染状況の調査結果、解体撤去の手順及び工法等を 踏まえ、原子炉領域設備等解体撤去期間に入るまでに廃止措置計画 の変更の認可を受ける。

- 2.3 放射性液体廃棄物の管理方法
- (1) 解体工事準備期間

解体工事準備期間は、放射性液体廃棄物を適切に処理するため に、放出量を合理的に達成できる限り低くするとともに、放射性廃 棄物処理機能等の必要な機能を有する設備を維持管理する。

また、放射性液体廃棄物の放出に際しては、放出前のタンクにおいて放射性物質濃度の測定等を行い、排水中の放射性物質濃度が、「線量限度等を定める告示」に定める周辺監視区域外における水中の濃度限度を超えないようにするとともに、放射性液体廃棄物の年間放出量から、「線量目標値に関する指針」に基づき、放射性液体廃棄物の放出管理目標値を第10.3表のとおり設定し、これを超えないように努める。1号炉海水ポンプの廃止以降、1号炉から発生する放射性液体廃棄物は、2号炉から放出する。排水中の放射性物質の濃度は、2号炉の排水モニタによって監視する。

原子炉格納容器冷却材ドレン及び原子炉補助建家冷却材ドレンについては、これらに含まれるほう酸を回収し再使用する必要がないことから、<u>2号炉の</u>廃液処理系にて処理を行う。

放射性液体廃棄物の処理及び管理に係る必要な措置を保安規定に定めて管理する。

・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

考

- ・記載の適正化(表番号の繰り下げ)
- 記載の適正化(記載の充実)

変更前 変更後 考 (2) 原子炉領域周辺設備解体撤去期間以降 (2) 原子炉領域周辺設備解体撤去期間 原子炉領域周辺設備解体撤 原子炉領域周辺設備解体撤去期間以降については、管理区域内設 原子炉領域周辺設備解体撤去期間は,放射性液体廃棄物を適切に 去期間の廃止措置計画の具 備の解体撤去の状況に応じて, 放射性液体廃棄物の処理に必要とな 処理するために, 放出量を合理的に達成できる限り低くするととも 体化に伴う変更 る放射性廃棄物処理機能等の必要な機能を有する設備を維持管理 に,放射性廃棄物処理機能等の必要な機能を有する設備を維持管理 し,管理放出する。 する。 原子炉領域周辺設備解体撤去期間以降に発生する放射性液体廃棄 また、放射性液体廃棄物の放出に際しては、放出前のタンクにお 物の管理方法は、解体工事準備期間に行う汚染状況の調査結果を踏 いて放射性物質濃度の測定等を行い,排水中の放射性物質濃度が, まえ,原子炉領域周辺設備解体撤去期間に入るまでに廃止措置計画 「線量限度等を定める告示」に定める周辺監視区域外における水中 の変更の認可を受ける。 の濃度限度を超えないようにするとともに,放射性液体廃棄物の年 間放出量から,「線量目標値に関する指針」に基づき,放射性液体廃 棄物の放出管理目標値を第10.4表のとおり設定し、これを超えない ように努める。1号炉から発生する放射性液体廃棄物は、2号炉か ら放出する。排水中の放射性物質の濃度は、2号炉の排水モニタに よって監視する。 原子炉格納容器冷却材ドレン及び原子炉補助建家冷却材ドレンに ついては、これらに含まれるほう酸を回収し再使用する必要がない ことから、2号炉の廃液処理系にて処理を行う。 放射性液体廃棄物の処理及び管理に係る必要な措置を保安規定に 定めて管理する。 (3) 原子炉領域設備等解体撤去期間以降 原子炉領域設備等解体撤去期間以降に発生する放射性液体廃棄物 の管理方法は、汚染状況の調査結果、解体撤去の手順及び工法等を 踏まえ、原子炉領域設備等解体撤去期間に入るまでに廃止措置計画 の変更の認可を受ける。

3. 放射性固体廃棄物の廃棄 3.1 放射性固体廃棄物の種類及び処理の方法 3.1.1 原子炉運転中に発生した放射性固体廃棄物の種類及び処理の方法 原子炉運転中に発生した放射性固体廃棄物の種類は、廃液蒸発装置及び洗浄排水蒸発装置の濃縮廃液、雑固体廃棄物、脱塩塔使用済樹脂等がある。 この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。 3.1.2 廃止措置期間中に発生する放射性固体廃棄物の種類及び処理の	・記載の適正化 (表番号の繰り下げ)
3.1.1 原子炉運転中に発生した放射性固体廃棄物の種類及び処理の方法 原子炉運転中に発生した放射性固体廃棄物の種類は、廃液蒸発装置及び洗浄排水蒸発装置の濃縮廃液、雑固体廃棄物、脱塩塔使用済樹脂等がある。 この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
法原子炉運転中に発生した放射性固体廃棄物の種類は、廃液蒸発装置及び洗浄排水蒸発装置の濃縮廃液、雑固体廃棄物、脱塩塔使用済樹脂等がある。この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
原子炉運転中に発生した放射性固体廃棄物の種類は、廃液蒸発装置及び洗浄排水蒸発装置の濃縮廃液、雑固体廃棄物、脱塩塔使用済樹脂等がある。 この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
装置及び洗浄排水蒸発装置の濃縮廃液、雑固体廃棄物、脱塩塔使用済樹脂等がある。 この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
用済樹脂等がある。 この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
この期間に発生した放射性固体廃棄物は、廃棄物の種類、性状等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第10.5表に示す。	,, ,, , <u> </u>
等に応じて、圧縮減容、焼却処理又は固化等の処理を行い、固体 廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済 樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第 10.5表に示す。	,, ,, , <u> </u>
廃棄物貯蔵庫若しくは蒸気発生器保管庫に保管するか又は使用済 樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第 10.5表に示す。	,, ,, , <u> </u>
樹脂貯蔵タンク等に貯蔵する。 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第 10.5表に示す。	,, ,, , <u> </u>
放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第 10. <u>5</u> 表に示す。	,, ,, , <u> </u>
10. <u>5</u> 表に示す。	,, ,, , <u> </u>
	,, ,, , <u> </u>
3.1.2 廃止措置期間中に発生する放射性固体廃棄物の種類及び処理の	(表番号の繰り下げ)
3.1.2 廃止措置期間中に発生する放射性固体廃棄物の種類及び処理の	
方法	
(1) 解体工事準備期間	
解体工事準備期間に発生する放射性固体廃棄物の種類は、原子	
炉運転中と同様な廃棄物が想定される。	
この期間に発生する放射性固体廃棄物は、原子炉運転中に発生	
した放射性固体廃棄物と同様に廃棄物の種類,性状等に応じて処	
理を行う。	
解体工事準備期間の放射性固体廃棄物の処理フローを第 10.5 図	・記載の適正化
に示す。	(図番号の繰り下げ)
	方法 (1) 解体工事準備期間 解体工事準備期間に発生する放射性固体廃棄物の種類は、原子 炉運転中と同様な廃棄物が想定される。 この期間に発生する放射性固体廃棄物は、原子炉運転中に発生 した放射性固体廃棄物と同様に廃棄物の種類、性状等に応じて処理を行う。 解体工事準備期間の放射性固体廃棄物の処理フローを第 10.5 図

変更能	前 	変更	備 考			
		第10.2表 原子炉領域周辺設備解体撤去	第10.2表 原子炉領域周辺設備解体撤去期間における放射性気体廃棄物中			
		<u>の粒子状物質(Co-60)</u>	去期間の廃止措置計画の具			
		<u>項目</u>	放出管理目標値(Bq/y)	体化に伴う変更		
		粒子状物質(Co-60)	1.0×10 ⁸			
第10. <u>2</u> 表 解体工事準備期間における放射性液体廃棄物中の 放射性物質(トリチウムを除く)の放出管理目標値 (1, 2, 3号炉合算)		第10.3表 解体工事準備期間における放射性液体廃棄物中の 放射性物質(トリチウムを除く)の放出管理目標値 (1,2,3号炉合算)		・記載の適正化 (表番号の繰り下げ)		
項目	放出管理目標値(Bq/y)		放出管理目標値(Bq/y)	_		
放射性液体廃棄物中の放射性物質 (トリチウムを除く)	3.7×10 ¹⁰	放射性液体廃棄物中の放射性物質 (トリチウムを除く)	3.7×10 ¹⁰			
		の放射性物質(トリチウムを (1, 2, 3号炉合算) 項目 放射性液体廃棄物中の放射性物質 (トリチウムを除く)	<u>放出管理目標値(Bq√y)</u> 3.7×10 ¹⁰	去期間の廃止措置計画の具体化に伴う変更		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前 変更後 備考 第10.3表 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量 第10.5表 放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量 ・記載の適正化 (平成28年9月末現在) (平成28年9月末現在) (表番号の繰り下げ) 貯蔵・保管場所 貯蔵·保管場所 種類 種類 数量 数量 174 m^{3 ** 1} 174 m^{3*}1 脱塩塔使用済樹脂 脱塩塔使用済樹脂 使用済樹脂貯蔵タンク 使用済樹脂貯蔵タンク 使用済制御棒 使用済制御棒 89 体 89 体 使用済バーナブルポイズン 使用済バーナブルポイズン 使用済燃料貯蔵設備 246 体 使用済燃料貯蔵設備 246 体 使用済プラギングデバイス 174 体 使用済プラギングデバイス 174 体 均質固化体 494 本 均質固化体 494 本 ドラム缶 ドラム缶 固体廃棄物貯蔵庫 6,070 本 固体廃棄物貯蔵庫 6,070 本 雑固体 雑固体 2,851 本※2 2,851 本**2 その他 その他 2 基 蒸気発生器 蒸気発生器 2 基 蒸気発生器保管庫 蒸気発生器保管庫 298 m^{3 * 3} 保管容器 保管容器 298 m^{3 * 3} ※1:2号及び3号炉で発生した廃棄物を含む。 ※1:2号及び3号炉で発生した廃棄物を含む。 ※2:2000ドラム缶相当での保管数量である。 ※2:2000ドラム缶相当での保管数量である。 ※3:原子炉容器上部ふた、炉内構造物等を含む。 ※3:原子炉容器上部ふた、炉内構造物等を含む。

第10.4表 廃止措置期間中の放射性固体廃棄物の推定発生量 (単位: t) 放射能レベル区分※1 推定発生量※2 放射能レベルの比較的高いもの(L1) 低 約 <u>90</u> 廃べ 棄ル 放射能レベルの比較的低いもの(L2) 約880 物放 射性 放射能レベルの極めて低いもの(L3) 約2,070 放射性物質として扱う必要のないもの 約39,000

変更前

※1:放射能レベル区分値は、次のとおり。

合計**3

・L1の区分値の上限は、「原子炉等規制法施行令」第 31 条に定め る放射能濃度。

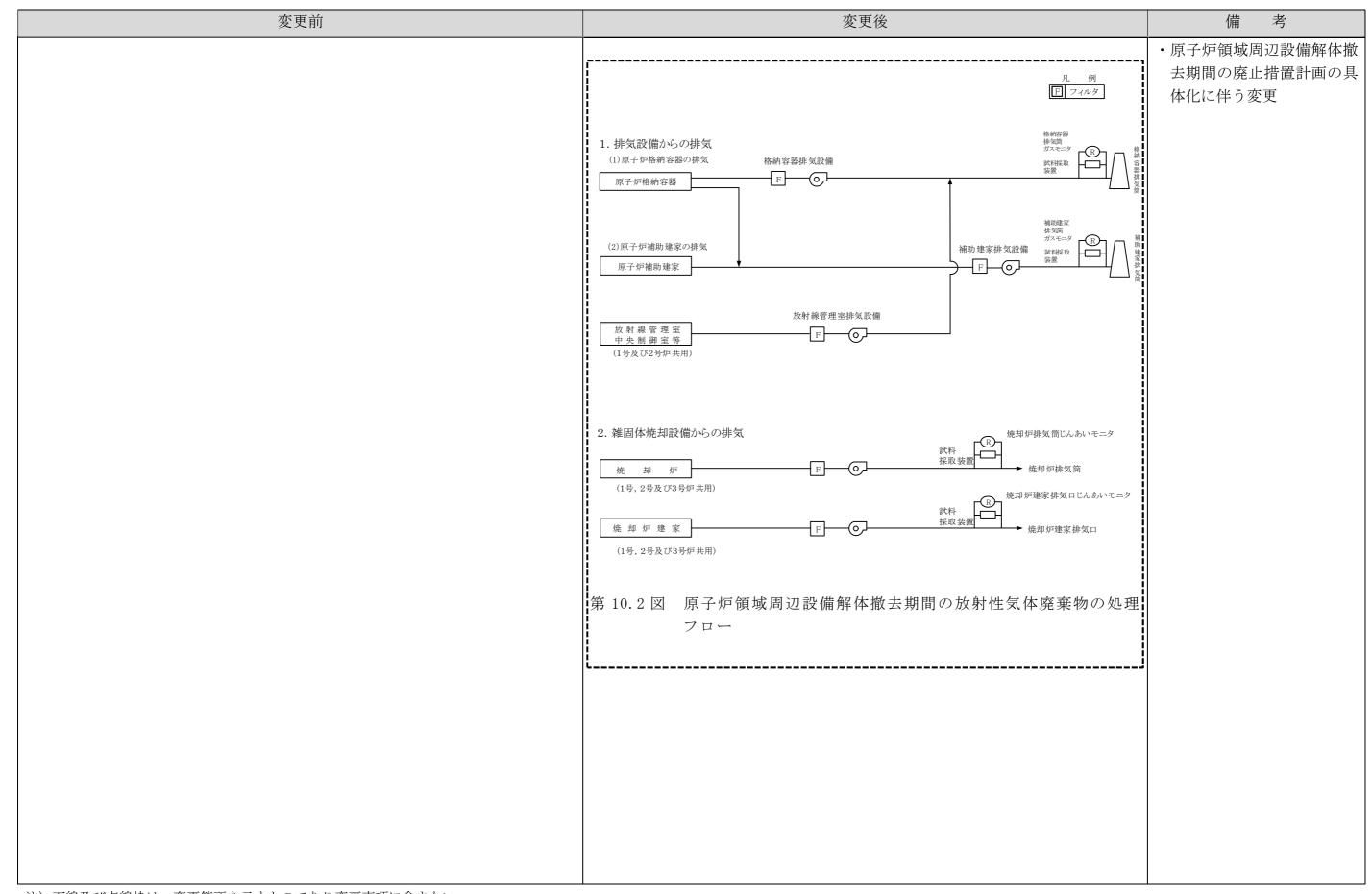
約 42,000

- ・L1とL2の区分値は、国内で操業されているコンクリートピット埋設施設の埋設許可条件と同等の最大放射能濃度。
- ・L2とL3の区分値は,「原子炉等規制法施行令」(昭和32年政令第324号。ただし、平成19年政令第378号の改正前のもの。) 第31条第1項に定める「原子炉施設を設置した工場又は事業所において生じた廃棄されるコンクリート等で容器に固型化していないもの」に対する濃度上限値の10分の1の放射能濃度。
- ・放射性物質として扱う必要のないものの区分値は,「原子炉等規制法」第 61 条の 2 第 1 項に規定する「製錬事業者等における工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度についての確認等に関する規則」第 2 条に定める放射能濃度。
- ※2:推定発生量は、次のとおり。
 - ・低レベル放射性廃棄物については、10 t 単位で切り上げた値である
 - ・<u>放射性物質として扱う必要のないもの</u>及び合計については,100 t単位で切り上げた値である。
 - ・端数処理のため合計値が一致しないことがある。
 - ・推定発生量には付随廃棄物を含まない。
- ※3: その他,放射性廃棄物でない廃棄物(管理区域外からの発生分を含む。)が約212,000 t 発生する(1,000 t 単位で切り上げた値)。

第10.6表 廃止措置期間中の放射性固体廃棄物の推定発生量

変更後

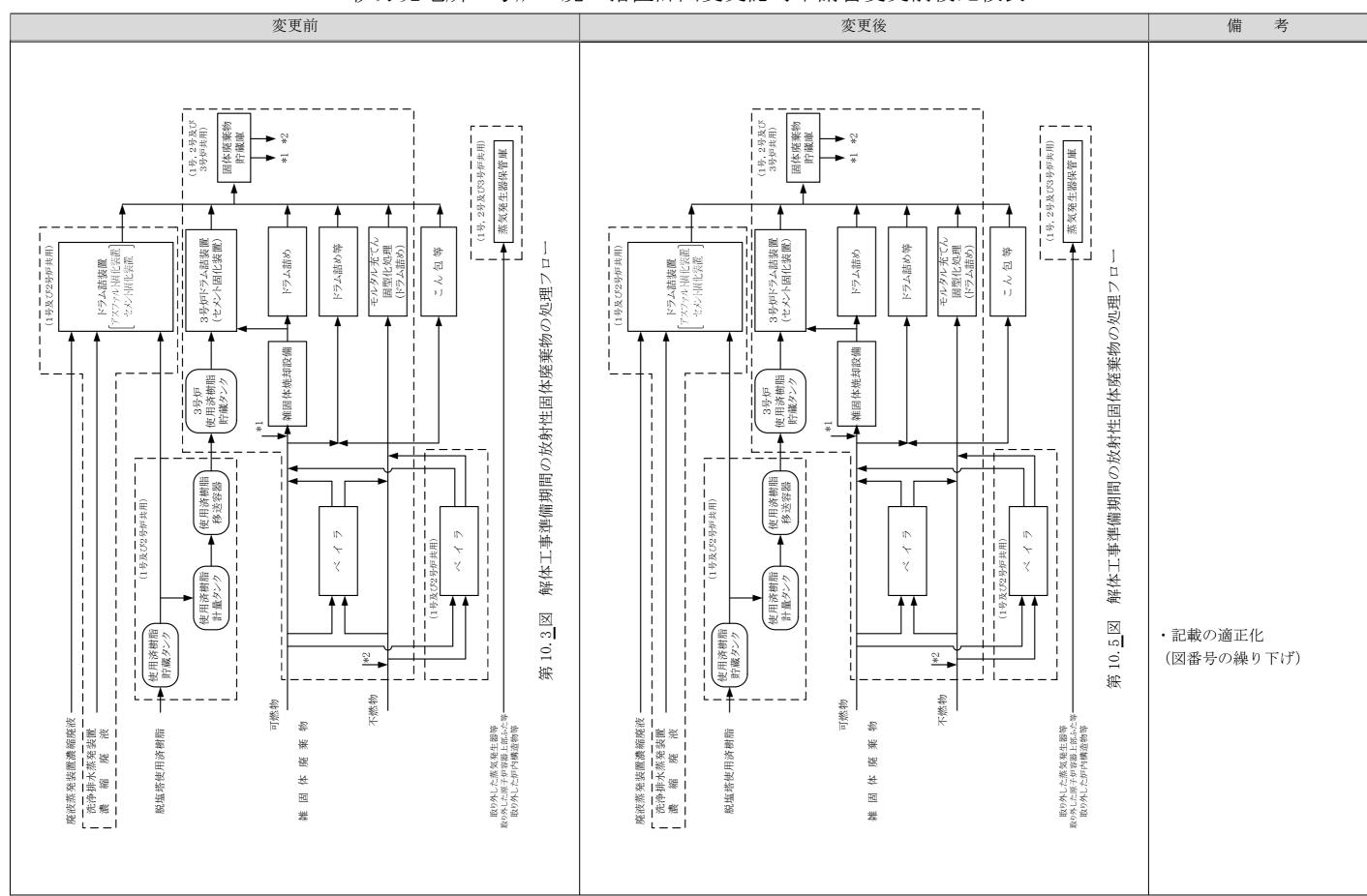
(単位: t)


	放射能レベル区分**1	推定発生量※2
低レ	放射能レベルの比較的高いもの(L1)	約 <u>70</u>
廃べ 乗ル 物放	放射能レベルの比較的低いもの(L2)	約 <u>460</u>
射性	放射能レベルの極めて低いもの(L3)	約 <u>6, 030</u>
放射性	生物質として扱う必要のないもの <u>(CL)</u>	約 21,900
	合計 ^{※3}	約 <u>28, 500</u>
※1:放射	対能レベル区分値は,次のとおり。	

- ・L1の区分値の上限は、「原子炉等規制法施行令」第 31 条に定め る放射能濃度。
- ・L1とL2の区分値は,「核燃料物質又は核燃料物質によって汚染された物の第二種廃棄物埋設の事業に関する規則」別表第1に定める放射能濃度の10分の1。
- ・L2とL3の区分値は、「核燃料物質又は核燃料物質によって汚染された物の第二種廃棄物埋設の事業に関する規則」別表第2に定める放射能濃度の10分の1。
- ・ L3 & CL の区分値は,「工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度が放射線による障害の防止のための措置を必要としないものであることの確認等に関する規則」別表第1欄の 33 種類の放射性物質のうち,旧原子力安全委員会が選定した放射性物質(核種)(旧重要 10 核種(H-3,Mn-54, Co-60, Sr-90, Cs-134, Cs-137, Eu-152, Eu-154, Pu-239及びAm-241))の放射能濃度を,別表第2欄の放射能濃度で除した割合の合計値として 1.0。
- ※2:推定発生量は、次のとおり。
 - ・二次的な汚染を生じている設備の一部(タンク,配管等の形状)については、除染効果(除染係数100)を見込んでいる。
 - ・低レベル放射性廃棄物については、10 t 単位で切り上げた値である。
 - ・CL及び合計については、100 t 単位で切り上げた値である。
 - ・端数処理のため合計値が一致しないことがある。
 - 推定発生量には付随廃棄物を含まない。
- ※3: その他,放射性廃棄物でない廃棄物 (NR) (管理区域外からの発生分を含む。)が約 195,000 t 発生する (1,000 t 単位で切り上げた値)。

- ・記載の適正化(表番号の繰り下げ)
- ・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更

考


注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

添付 書類

今回の変更申請に係る伊方発電所1号炉の廃止措置計画変更認可申請 書の添付書類は以下のとおりである。

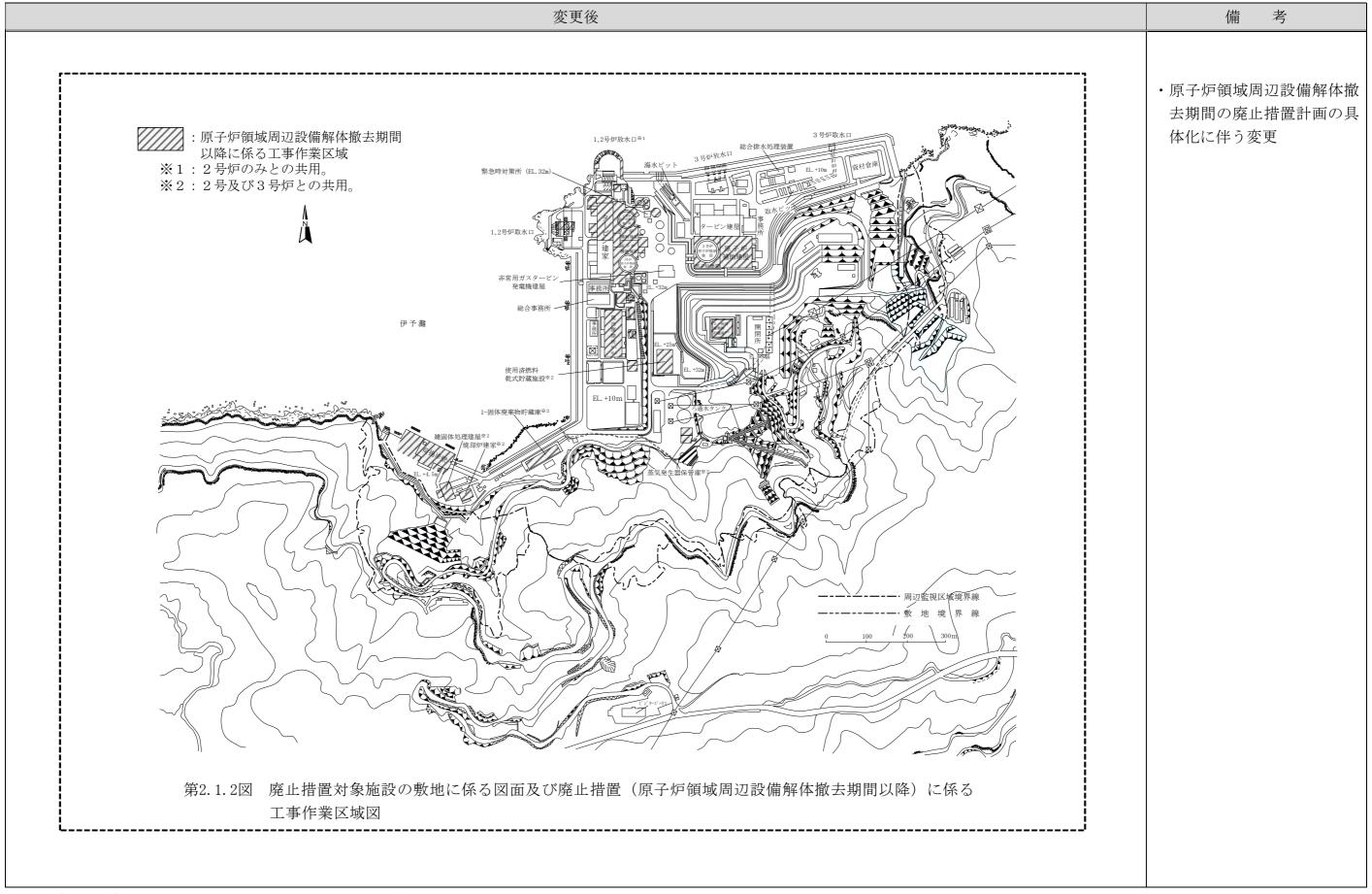
添付書類二 廃止措置対象施設の敷地に係る図面及び廃止措置に係る 工事作業区域図

添付書類三 廃止措置に伴う放射線被ばくの管理に関する説明書

添付書類四 廃止措置中の過失、機械又は装置の故障、地震、火災等が あった場合に発生することが想定される事故の種類、程度、 影響等に関する説明書

添付書類五 核燃料物質による汚染の分布とその評価方法に関する説明書

添付書類六 性能維持施設及びその性能並びにその性能を維持すべき 期間に関する説明書


添付書類七 廃止措置に要する費用の見積り及びその資金の調達計画 に関する説明書 添付書類二 廃止措置対象施設の敷地に係る図面及び廃止措置に係る工 事作業区域図

廃止措置対象施設の敷地に係る図面及び廃止措置に係る工事作業区域図の記述の一部を,伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

変更前	変更後	備考
添付書類二 廃止措置対象施設の敷地に係る図面及び廃止措置に係る工事作業	添付書類二 廃止措置対象施設の敷地に係る図面及び廃止措置に係る工事作業	
区域図	区域図	
廃止措置対象施設の敷地に係る図面及び廃止措置(解体工事準備期間)に	廃止措置対象施設の敷地に係る図面及び廃止措置(解体工事準備期間)に	
係る工事作業区域図を第2.1.1図に示す。	係る工事作業区域図を第2.1.1図に示す。	
原子炉領域周辺設備解体撤去期間以降に係る工事作業区域図については,	廃止措置対象施設の敷地に係る図面及び廃止措置(原子炉領域周辺設備解	• 原子炉領域周辺設備解体撤
原子炉領域周辺設備解体撤去期間に入るまでに廃止措置計画に反映し変更	体撤去期間以降) に係る工事作業区域図を第2.1.2図に示す。	去期間の廃止措置計画の具
の認可を受ける。		体化に伴う変更
	1	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	備考

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

添付書類三 廃止措置に伴う放射線被ばくの管理に関する説明書 廃止措置に伴う放射線被ばくの管理に関する説明書の記述の一部を, 伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変 更後欄のとおり変更する。

変更前	変更後	備考
添付書類三 廃止措置に伴う放射線被ばくの管理に関する説明書	添付書類三 廃止措置に伴う放射線被ばくの管理に関する説明書	
2. 被ばく評価	2. 被ばく評価	
2.1 放射線業務従事者の被ばく評価	2.1 放射線業務従事者の被ばく評価	
(2) 原子炉領域周辺設備解体撤去期間	(2) 原子炉領域周辺設備解体撤去期間	
原子炉領域周辺設備解体撤去期間以降については、汚染状況の調査	原子炉領域周辺設備解体撤去期間の放射線業務従事者の総被ばく	• 原子炉領域周辺設備解体撤
結果,解体工法等についての検討結果を踏まえ,原子炉領域周辺設備	線量は、管理区域内設備の解体撤去、発電用原子炉施設の維持管理等	去期間の廃止措置計画の具
解体撤去期間に入るまでに評価を実施し, 廃止措置計画に反映し変更	を考慮して評価した結果から、約3.8人・Svと推定する。	体化に伴う変更
の認可を受ける。		
	(3) 原子炉領域設備等解体撤去期間	
	原子炉領域設備等解体撤去期間以降については、汚染状況の調査結	
	果,解体工法等についての検討結果を踏まえ,原子炉領域設備等解体	
	撤去期間に入るまでに評価を実施し、廃止措置計画に反映し変更の認	
	<u>可を受ける。</u>	

	変更前				変更後			備考
第3.2.10表 解体工事準備	前期間における が	放射性液体廃棄物	物の年間放出量 (単位:Bq/y)	第3.2.10表 解体工事準備	備期間における <i>放</i>	设射性液体廃棄 物	物の年間放出量 (単位:Bq/y)	
核種	1号炉**1	2号炉	3号炉**2	核種	1号炉**1	2 号炉	3 号炉**2	
C r - 5 1	_	1. 71×10 ⁷	7. 40×10 ⁸	C r - 5 1	_	1.71×10 ⁷	7. 40×10 ⁸	
Mn - 5 4	_	2.57×10^{7}	1. 11×10 ⁹	Mn - 5 4	_	2.57×10^{7}	1. 11×10 ⁹	
F e - 5 9	_	1. 71×10 ⁷	7. 40×10 ⁸	F e - 5 9	_	1.71×10 ⁷	7. 40×10 ⁸	
C o - 5 8	_	8. 57×10 ⁷	3. 70×10 ⁹	C o - 5 8	_	8. 57×10 ⁷	3. 70×10 ⁹	
C o - 6 0	_	1. 28×10 ⁸	5. 55×10 ⁹	C o - 6 0	_	1. 28×10 ⁸	5. 55×10 ⁹	
Sr-89	_	1. 71×10 ⁷	7. 40×10 ⁸	Sr-89	_	1.71×10 ⁷	7. 40×10 ⁸	
Sr-90	_	8. 57×10 ⁶	3. 70×10 ⁸	Sr-90	_	8. 57×10 ⁶	3. 70×10 ⁸	
I — 1 3 1	_	1. 28×10 ⁸	5. 55×10 ⁹	I – 1 3 1	_	1. 28×10 ⁸	5. 55×10 ⁹	
C s - 1 3 4	_	1.71×10 ⁸	7. 40×10 ⁹	C s - 1 3 4	_	1.71×10 ⁸	7. 40×10 ⁹	
C s - 1 3 7	_	2. 57×10 ⁸	1. 11×10 ¹⁰	C s - 1 3 7	_	2. 57×10 ⁸	1. 11×10 ¹⁰	
放出量合計 (H-3を除く)	_	8.5 ×10 ⁸	3.7 ×10 ¹⁰	放出量合計 (H-3を除く)	_	8.5 ×10 ⁸	3.7 ×10 ¹⁰	
H-3	_	8.5 ×10 ¹	5. 55×10 ¹³	H-3	_	8.5 ×10 ¹	5. 55×10 ¹³	
年間の復水器冷却水等の量 (m³/y)	_	2. 19×10 ⁷	1. 63×10 ⁹	年間の復水器冷却水等の量 (m³/y)	_	2. 19×10 ⁷	1. 63×10 ⁹	
※1:1号炉から発生する加	文射性液体廃棄 ⁴	物は2号炉から放	出する。	※1:1号炉から発生する	放射性液体廃棄物	- 	対出する。	
※2:3号炉における放射性	生液体廃棄物の年	年間放出量及び年	間の復水器冷却	※2:3号炉における放射性			, , , , , , , , , , , , , , , , , , , ,	
水等の量は「原子炉設置	置許可申請書	添付書類九」に示	す値。	水等の量は「原子炉	設置許可申請書	添付書類九」に	こ示す値。	・記載の適正化 (体裁の統一)
								(11 324 -> 11) 11 - 1

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備考
2.2.2 原子炉領域周辺設備解体撤去期間 <u>以降</u>	2.2.2 原子炉領域周辺設備解体撤去期間	・原子炉領域周辺設備解体撤
原子炉領域周辺設備解体撤去期間以降の評価については,原子炉領	2.2.2.1 放射性気体廃棄物の放出による被ばく	去期間の廃止措置計画の具
域周辺設備解体撤去期間に入るまでに廃止措置計画の変更の認可を	原子炉領域周辺設備解体撤去期間における環境への放射性物質	体化に伴う変更
受ける。_	の放出に伴い周辺公衆が受ける被ばく線量は,「線量目標値に関す	
	る指針」,「線量目標値に対する評価指針」,「一般公衆線量評価」,「気	
	象指針」及び「発電用原子炉廃止措置工事環境影響評価技術調査―	
	環境影響評価パラメータ調査研究―(平成18年度経済産業省委託調	
	査, 財団法人電力中央研究所) の添付 廃止措置工事環境影響評価	
	ハンドブック (第3次版)」(以下「電中研ハンドブック」という。)	
	を参考として評価する。	
	なお、評価においては、2001年1月から2001年12月の1年間にお	
	ける気象データを使用する。また、評価に使用する気象データは、	
	近年の気象データによる異常年検定を行い, 異常がないことを確認	
	<u>している。</u>	
	(1) 放射性気体廃棄物の推定放出量	
	a. 放出量評価方法(1号炉)	
	原子炉領域周辺設備解体撤去期間に1号炉から発生する放射	
	性気体廃棄物の主なものは、管理区域内設備の解体撤去に伴って	
	発生する粒子状物質である。希ガスについては,解体工事準備期	
	間で実施した作業に伴い放出されており、原子炉領域周辺設備解	
	体撤去期間以降の放出量は無視できる。よう素についても、解体	
	工事準備期間と同様,放出量は無視できる。	
	したがって,原子炉領域周辺設備解体撤去期間の放射性気体廃	
	棄物の放出量は,原子炉領域周辺設備の推定放射能量に,解体撤	
	去に伴う放射性物質の気中移行割合を乗じ、汚染拡大防止囲いか	
	らの漏えい率並びに局所排風機フィルタ及び建家排気フィルタ	
	による捕集効率を考慮して求める。解体撤去に伴い発生する放射	
	性気体廃棄物の大気への移行フローを第3.2.2図に示す。	
	放出期間については、原子炉領域周辺設備解体撤去期間におけ	
	る解体撤去を1年間で行い、発生する放射性気体廃棄物が年間を メルストストストストストストストストストストストストストストストストストストスト	
	通じて放出されるものとして評価する。	
	また、原子炉領域周辺設備の推定放射能量については、「添付	
	書類五 核燃料物質による汚染の分布とその評価方法に関する	
	説明書」で評価した推定放射能量(2027年4月1日時点)を基に,	
	<u>設定する。</u>	

変更前	変更後	備 考
	(a) 計算式	• 原子炉領域周辺設備解体撤
	原子炉領域周辺設備解体撤去期間に1号炉から放出される	去期間の廃止措置計画の具
	放射性気体廃棄物の量は次式を用いて計算する。	体化に伴う変更
	$\underline{Q_{Ai} = A_{Ri} \cdot F_A \cdot \{(1 - r_1) \cdot (1 - D_{F1}) \cdot (1 - D_{F2})\}$	
	$+ r_1 \cdot (1 - D_{F2})$ (3-14)	
	Q _{Ai} :解体撤去に伴う核種 i の大気への放出量 (Bq)	
	ARi:原子炉領域周辺設備の核種iの推定放射能量 (Bq)	
	<u>F A : 解体撤去に伴う放射性物質の気中移行割合 (-)</u>	
	$\underline{F}_{A} = f_{s} \times f_{L}$	
	<u>f</u> s:飛散率 (-)	
	<u>f L</u> : 切断等による欠損割合 (-)	
	<u>r 1 : 汚染拡大防止囲いからの漏えい率 (-)</u>	
	D F 1:汚染拡大防止囲い局所排風機フィルタの捕集効率	
	<u>(-)</u>	
	D F 2: 建家排気フィルタの捕集効率 (-)	
	(b) 計算条件	
	(3-14) 式の計算に用いたパラメータを第3.2.21表に示す。	
	b. 放出量評価方法 (2号炉)	
	2号炉から放出される放射性気体廃棄物(希ガス及びよう素)	
	の量は, 「伊方発電所2号炉の廃止措置計画 添付書類三」に示	
	す解体工事準備期間の値とする。	
	c. 放出量評価方法 (3号炉)	
	3号炉から放出される放射性気体廃棄物(希ガス及びよう素)	
	の量は、「原子炉設置許可申請書 添付書類九」に示す値とする。	
	d. 放出量評価結果	
	原子炉領域周辺設備解体撤去期間における1号炉の放射性気	
	体廃棄物のうち, 実効線量の評価に用いる核種の年間放出量を第	
	<u>3.2.25表に示す。</u>	
注) 下線及び占線枠は - 亦再築正を示すものでもりが再車頂に今まわい		

変更前	変更後					備考
	第3.2.25表 原子炉領域周辺設備解体撤去期間における放射性気体廃棄物					•原子炉領域周辺設備解体撤
		の年間放出量				去期間の廃止措置計画の具
		原子炉				体化に伴う変更
	<u>核種</u>		1号炉	2号炉	3 号炉	
		<u>C-14</u>	1.5×10 ¹⁰	_	_	
	粒	<u>Co-60</u>	1.1×10^{8}	<u> </u>		
	粒子状物質	<u>Pu-238</u>	5.8×10 ⁴	<u>=</u>	=	
	質	<u>Am-241</u>	2.1×10 ⁴	<u>=</u>	_	
		<u>Cm-244</u>	2.6×10^{5}	<u>=</u>	_	
	※:「	2.2.2.1 (2) 放射性	上気体廃棄物によ	る実効線量」に	おいて,各被ばく	
	<u> </u>	経路における線量寄	与の割合の合計な	i90%以上となる	核種を示す。	
		e. 原子炉領域周]辺設備解体撤去	期間における放出	出管理目標值	
		1号炉の放と	出管理目標値の	対象核種は, 粒	子状物質のうち,	
		•			0-60とする。	
					領域周辺設備解体 子状物質 (Co-	
					26表のとおり設定	
		•	えないように努め			
	第3.2	2. 26表 原子炉領域	周辺設備解体撤	去期間における 加	放射性気体廃棄物	
					目標値(1号炉)	
		<u>項目</u>		放出管理目標值		
	<u> </u>	並子状物質(C o − €	60)	1.0×1	08	
注)下線及び占線枠は 変更箇所を示すものであり変更事項に含またい						

変更前	変更後	備 考
	(2) 放射性気体廃棄物による実効線量	原子炉領域周辺設備解体撤
	a. 実効線量評価の概要	去期間の廃止措置計画の具
	1号炉から発生する放射性気体廃棄物による実効線量の計算	体化に伴う変更
	は,放射性雲からの γ 線による外部被ばく,地表沈着物からの γ	
	線による外部被ばく,呼吸摂取による内部被ばく及び農作物摂取	
	による内部被ばくを合算して評価する。	
	なお、畜産物摂取による内部被ばくについては、発電所周辺(半	
	<u>径10km以内)に牧草地が存在しないことから、評価の対象外とし</u>	
	<u>た。</u>	
	評価においては、2001年1月から2001年12月の1年間における	
	気象データを使用する。地上放出の条件で、3号炉を中心として	
	16方位に分割したうちの陸側9方位の敷地境界外について相対	
	濃度(χ $/$ Q $)$ 及び相対線量(D $/$ Q $)$ を求め,着目方位及びそ	
	の隣接方位の寄与を考慮し、最大となる地点の値を評価に用いる。	
	b. 実効線量評価方法(1号炉)	
	1号炉から発生する放射性気体廃棄物による実効線量は,放射	
	性気体廃棄物が年間を通じて連続的に放出されるものとして評	
	<u>価する。</u>	
	実効線量の評価に用いる核種は, a. に示す各評価経路における	
	線量寄与の割合の合計が90%以上となる核種を選定し、放出管理	
	の観点から、Co-60を評価対象核種として追加する。	
	実効線量の評価に用いる核種の年間放出量を第3.2.25表に示	
	<u></u>	
	(a) 放射性雲からのγ線による外部被ばく	
	放射性雲からのγ線による外部被ばくの評価に用いる	
	D/Qは、陸側9方位の敷地境界外について放射性雲からのγ	
	線による実効線量が最大となる地点の値を用いる。	
	放射性雲からのγ線による外部被ばくは次式を用いて計算	
	<u>する。</u>	
	$H_{\gamma} = \Sigma H_{\gamma i} \qquad \cdots \cdots (3-15)$	
	$\frac{\mathbf{H}_{\gamma i} = (\mathbf{D}/\mathbf{Q}) \cdot \mathbf{E}_{i} \cdot \mathbf{Q}_{i} \cdot (3,600 \times 24 \times 365)}{\mathbf{H}_{\gamma i} = (\mathbf{D}/\mathbf{Q}) \cdot \mathbf{E}_{i} \cdot \mathbf{Q}_{i} \cdot (3,600 \times 24 \times 365)}$	
	<u> (3 –16)</u>	
	H_{γ} : 放射性雲からの γ 線による実効線量 $(\mu \mathrm{Sv/y})$	
注) 下線及び点線枠は 変更箇所を示すものであり変更事項に含まかい		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	Hγi:核種iに関する放射性雲からのγ線による実効線量	• 原子炉領域周辺設備解体撤
	<u>(μ Sv/y)</u>	去期間の廃止措置計画の具
	D/Q :放射性雲に関する相対線量 $(\mu Sv/Bq/MeV)$	体化に伴う変更
	<u>E</u> : :核種 i のγ線実効エネルギ (MeV)	
	Q: :解体撤去に伴う核種 i の大気への放出率 (Bq/s)	
	$Q_{i} = \frac{Q_{A i}}{}$	
	$3,600 \times 24 \times 365$	
	(b) 地表沈着物からのγ線による外部被ばく	
	地表沈着物からのγ線による外部被ばくの評価に用いる	
	χ/Qは、陸側9方位の敷地境界外について年平均地上空気中	
	濃度が最大となる地点の値を用いる。	
	i. 核種の地表沈着量	
	地表沈着量は次式を用いて計算する。	
	$V_{Gi} \cdot (\chi/Q)_D \cdot Q_i$	
	$A_{Gi} = - \cdot \{ 1 - \exp(-\lambda_{Gi}) \}$	
	$\frac{\lambda_{Gi}}{(3-17)}$	
	・ t G)}	
	AGi: 核種Iの起張沈有量 (bd/ m / s) VGi: 核種 i の乾燥沈着速度 (m/s)	
	$(\chi/Q)_D$: 地表沈着に関する相対濃度 (s/m^3)	
	λ_{Gi} : 土壌からの核種 i の実効除去率 (s^{-1})	
	$\frac{\lambda_{Gi} = \lambda_{i} + \lambda_{Si}}{\lambda_{Gi}}$	
	λ_{i} :核種 i の崩壊定数 (s^{-1})	
	λ_{Si} : 土壌からの核種 i の系外除去率 (s^{-1})	
	t _G :放射性物質の沈着を考慮する期間 (s)	
	ii. 地表沈着核種からのγ線による実効線量	
	地表沈着核種からのγ線による実効線量は次式を用いて	
	<u>計算する。</u>	
	$H_A = \Sigma H_{Ai} \qquad \dots $	
	i	
	(μ Sv/y) Η _{Ai} : 地表沈着核種 i からの γ 線による実効線量	
	<u>11A; . 地 X 化 有 核 性 1 が り y </u>	
	<u>(μ 3ν/ γ)</u>	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	K _{Ai} : 地表沈着核種 i からの実効線量換算係数	原子炉領域周辺設備解体撤
	$((\mu \text{ Sv/y})/(\text{Bq/m}^2))$	去期間の廃止措置計画の具
	(c) 呼吸摂取による内部被ばく	体化に伴う変更
	呼吸摂取による内部被ばくの評価に用いる χ / Q は、陸側 9	
	方位の敷地境界外について年平均地上空気中濃度が最大とな	
	る地点の値を用いる。	
	<u>呼吸摂取による内部被ばくの評価は次式を用いて計算する。</u>	
	$H_{B} = \sum_{i} H_{Bi}$ (3-20)	
	$H_{Bi} = B_r \cdot K_{Ri} \cdot (\chi / Q)_B \cdot Q_i \cdot 365$	
	<u>······ (3-21)</u>	
	H _B : 呼吸摂取による実効線量 (μ Sv/y)	
	<u>H_{Bi}:核種iに関する呼吸摂取による実効線量 (μSv/y)</u>	
	$B_{\rm r}$:成人の呼吸率 (m^3/d)	
	K _{Ri} : 呼吸摂取による核種 i の実効線量換算係数	
	$\frac{(\mu \text{ Sv/Bq})}{(\mu \text{ Sv/Bq})}$	
	(d) 農作物摂取による内部被ばくの悪何に用いるお勧告は新の	
	農作物摂取による内部被ばくの評価に用いる放射性核種の	
	地表沈着量は「(b) i . 核種の地表沈着量」と同じである。 農作物摂取による内部被ばくの評価に用いる χ / Q は,陸側	
	9方位の敷地境界外について年平均地上空気中濃度が最大と	
	なる地点の値を用いる。	
	i. 農作物中の放射性物質濃度(C-14以外)	
	農作物中の放射性物質濃度(C-14以外)の評価は次式	
	$\underline{C_{V_i} = C_{1V_i} + C_{2V_i}} \qquad \dots \qquad (3-22)$	
	$R_{LVi} \cdot F_{EVi}$	
	$C_{1Vi} = \cdot V_{Gi} \cdot (\chi/Q)_{F}$	
	$C_{1Vi} = \frac{\sum_{i=1}^{LVi} \cdot Y_{V}}{\sum_{i=1}^{LVi} \cdot Y_{V}} \cdot V_{Gi} \cdot (\chi/Q)_{F}$ $\frac{\lambda_{EVi} \cdot Y_{V}}{\{1 - \exp(-\lambda_{EVi} \cdot t_{V})\}}$	
	$\frac{\cdot Q_{i} \cdot \{1 - \exp(-\lambda_{EVi} \cdot t_{V})\}}{\cdots \cdots (3-23)}$	
	$\frac{1}{2}$	
	C_{FVi}	
	$C_{2Vi} = \frac{1}{S_V} \cdot A_{Gi} \qquad \dots $	
注)下線及び占線枠は - 亦再第重を示えます。のでも N 亦再車項に今まない		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	C _{Vi} : 農作物V中の核種 i の放射性物質濃度	· 原子炉領域周辺設備解体撤
	(Bq/kg)	去期間の廃止措置計画の具
	C _{1Vi} :葉面沈着による農作物V中の核種iの放射性物	体化に伴う変更
	質濃度 (Bq/kg)	
	C _{2Vi} :経根吸収による農作物V中の核種iの放射性物	
	質濃度 (Bq/kg)	
	R _{LVi} :農作物Vに関する核種iの葉面付着割合	
	(乾燥沈着) (一)	
	F _{EVi} :農作物Vに関する核種iの葉面から可食部へ	
	<u>の移行係数 (-)</u>	
	$\lambda_{\text{EV}_{ ext{i}}}$: 農作物 V からの核種 i の実効除去率 (s^{-1})	
	$\lambda_{\rm EVi} = \lambda_{\rm i} + \lambda_{\rm WVi}$	
	<u>λwvi:農作物Vに関する核種iのウェザリング除去率</u>	
	(s ⁻¹)	
	Y _V :農作物Vの栽培密度 (kg/m²)	
	$(\chi/Q)_F:$ 農作物摂取に関する相対濃度 (s/m^3)	
	<u>t v : 農作物Vへの核種 i の沈着を考慮する期間</u>	
	<u>(s)</u>	
	<u>C FV i</u> :土壌から農作物 V への核種 i の移行割合	
	((Bq/kg)/(Bq/kg-soil))	
	S_V : 農作物 V に関する実効地表面密度 (kg/m^2)	
	ii. 農作物中の放射性物質濃度(C-14)	
	農作物中の放射性物質濃度(C-14)の評価は次式を用	
	<u>いて計算する。</u>	
	$(\chi/Q)_{F} \cdot Q_{C}$	
	$C_{cv} = F_{cv} \cdot \frac{(\chi / Q)_F \cdot Q_c}{}$	
	C_{A}	
	(3-25)_	
	Ccv: 展作物 V 中の C = 1 4 仮及 (bq/ kg) Fcv: 農作物 V 中の炭素重量割合 (kg-C/kg)	
	Q _C : 解体撤去に伴うC-14の大気への放出率	
	<u>Qc . 解体服器に任うと「14の人気への放山学</u> (Bq/s)	
	(bq/s)	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変	備考			
	e. 実効線量評価結果	•原子炉領域周辺設備解体撤			
	1号炉から放出される	去期間の廃止措置計画の具			
	る実効線量を評価した結				体化に伴う変更
	<u>μ Svである。評価地点は第</u> <u>これに、2 号及び3 号</u>				
	<u>- (1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4</u>				
	子炉領域周辺設備解体撤:				
	素を除く)による周辺公	衆が受ける実	効線量は年間	引約2.4μSvで	
	<u>ある。</u>				
	第3.2.39表 原子炉領域周辺設備解体		地境界外にお	<u>ける</u>	
	粒子状物質による年間実	効線量	<i>(</i>), (
				<u>位:μ Sv/y)</u>	
			実効線量		
	H I IMA/ILLEP	1号炉	2号炉	3号炉	
	<u>放射性雲からのγ線による</u> 実効線量 (H _γ)	3.7×10^{-5}	_	_	
	<u>地表沈着核種からのγ線による</u> 実効線量 (H _A)	2. 4×10 ⁻¹	_	_	
	呼吸摂取による実効線量 (H _B)	7.5×10^{-2}	_	_	
	農作物摂取による実効線量 (H _F)	9.3×10^{-1}	_	_	
	<u>合計</u>		<u>1.3</u>		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	2.2.2.2 放射性液体廃棄物の放出による被ばく	• 原子炉領域周辺設備解体撤
	原子炉領域周辺設備解体撤去期間における環境への放射性物質	去期間の廃止措置計画の具
	の放出に伴い周辺公衆が受ける被ばく線量は,「線量目標値に関す	体化に伴う変更
	<u>る指針」,「線量目標値に対する評価指針」,「一般公衆線量評価」及</u>	
	び「原子炉設置許可申請書 添付書類九」における放射性液体廃棄	
	物による実効線量の評価方法を参考として評価する。	
	(1) 放射性液体廃棄物の推定放出量	
	原子炉領域周辺設備解体撤去期間に、1号炉から発生する放射性	
	液体廃棄物は、解体工事準備期間と同様に、原子炉運転中と同様な	
	廃棄物である。	
	原子炉領域周辺設備解体撤去期間においては、管理区域内設備の	
	水中解体は行わないことから、解体に伴って発生する粒子状物質が	
	液体中に移行することは想定しない。なお、水中解体を行い、それ	
	に伴って粒子状物質が液体中に移行したとしても,原子炉運転中及	
	び解体工事準備期間と同様の処理及び管理となる。	
	放出管理目標値は、解体工事準備期間と同様に、1号及び2号炉	
	の運転終了と1号炉海水ポンプの廃止に伴う復水器冷却水等の量	
	の減少を考慮し,実効線量の計算に用いる海水中における放射性物	
	質の濃度を原子炉運転中と同等に維持するよう,以下のとおり設定	
	<u>する。</u>	
	a. 海水中における放射性物質の濃度	
	「原子炉設置許可申請書 添付書類九」では,放射性液体廃棄	
	物中に含まれる放射性物質に起因する実効線量の計算に用いる	
	海水中における放射性物質の濃度は、1、2号炉及び3号炉の放	
	射性物質の年間放出量をそれぞれの年間の復水器冷却水等の量	
	で除した放水口における濃度のいずれか大きい方としている。	
	b. 原子炉領域周辺設備解体撤去期間における放出管理目標値	
	原子炉運転中の実効線量の計算に用いる海水中における放射	
	性物質の濃度は、原子炉運転中の復水器冷却水等の量を基に計算	
	している。	
	1号及び2号炉の運転終了に伴い,1号及び2号炉の復水器冷	
	却水等の量を減少させるが, 実効線量の計算に用いる海水中にお	
	ける放射性物質の濃度を原子炉運転中と同等に維持するよう,1	
	<u>号及び2号炉の年間放出量を減少させる。</u>	
	1号炉海水ポンプの廃止以降,1号炉から発生する放射性液体	
	廃棄物は,2号炉から放出する。	
注) 下線及び点線枠は 変更箇所を示すものであり変更事項に含まない。	ı	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備考
	原子炉領域周辺設備解体撤去期間における放射性液体廃棄物 の年間放出量を第3.2.40表に示す。 以上を踏まえ,原子炉領域周辺設備解体撤去期間における放射 性液体廃棄物中の放射性物質(トリチウムを除く)の放出管理目	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更
	<u>標値(1,2,3号炉合算)を第3.2.41表のとおり設定し,これ</u> を超えないように努める。	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		変更後			備考
	第3.2.40表 原子炉領域周辺設	•原子炉領域周辺設備解体撤			
	の年間放出量			(単位:Bq/y)	去期間の廃止措置計画の具 体化に伴う変更
	<u>核種</u>	1号炉**1	2 号炉	3号炉*2	仲間に圧力及又
	<u>C r - 5 1</u>	<u> </u>	1. 71×10 ⁷	7. 40×10 ⁸	
	<u>Mn - 5 4</u>	<u>–</u>	2. 57×10 ⁷	1.11×10 ⁹	
	<u>Fe-59</u>	<u>–</u>	1.71×10 ⁷	7.40×10^{8}	
	<u>C o - 5 8</u>	_	8.57×10^{7}	3.70×10^{9}	
	<u>C o - 6 0</u>	=	1. 28×10 ⁸	5. 55×10 ⁹	
	<u>Sr-89</u>	<u> </u>	1.71×10^{7}	7.40×10^{8}	
	<u>Sr-90</u>	<u>=</u>	8. 57×10 ⁶	3.70×10^{8}	
	<u>I - 1 3 1</u>	<u>=</u>	1. 28×10 ⁸	5.55×10^{9}	
	<u>C s - 1 3 4</u>	<u>=</u>	1.71×10 ⁸	7.40×10^{9}	
	<u>C s - 1 3 7</u>	=	2.57×10^{8}	1.11×10 ¹⁰	
	<u>放出量合計</u> _(H-3を除く)_	=	8.5 ×10 ⁸	3.7×10^{10}	
	<u>H-3</u>	_	8.5 ×10 ¹¹	5. 55×10 ¹³	
	年間の復水器冷却水等の量 (m³/y)	_	2. 19×10 ⁷	1.63×10 ⁹	
	<u>※</u> 1:1号炉から発生する放射				
	※2:3号炉における放射性液				
	水等の量は「原子炉設置	<u> 1計刊甲萌者</u>	弥刊 青翔儿」に2	<u>い91世。</u>	
注)下線及び点線枠は 変更箇所を示すものであり変更事項に含まかい					

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前			変更後			備	考
	2. 2. 2. 3 J	2.2.2.3 よう素の放出による被ばく					周辺設備解体撤
	<u>(1)</u> 放	射性気体廃棄物	中のよう素による	る実効線量		去期間の廃	止措置計画の具
		「2.2.2.1(1) 方	女射性気体廃棄物	の推定放出量」	で述べたように,	体化に伴う	変更
					成周辺設備解体撤		
		期間における1号					
					う素による実効		
			<u> </u>	添付書類九」に	における評価結果		
		<u>用いる。</u> ### <i>年</i> #感恋	畑中のとる書に	トフ安弘伯見れる	约0.40		
		成別性気体廃棄? 地点を第3.2.1図		よる夫別様里をタ	第3.2.42表に, 評		
				物中のよう妻の頃	吸入摂取及び葉菜		
					であり、年間約		
		44μSvとなる。		- 100-747 L - 2 1/1/ L	1 - C/ / 1 IPI/II/J		
	<u></u>	,					
	第3. 2. 42表	原子炉領域周辺	設備解体撤去期間	間における放射性	三気体廃棄物		
		中のよう素によ	る実効線量(1,	2,3号炉合算	<u>i)</u>		
				(単位: μ Sv/y)		
	摂取経路	<u>核種</u>	成人	<u>幼児</u>	<u>乳児</u>		
		<u>I - 1 3 1</u>	4.4×10^{-2}	7.9×10^{-2}	4.9×10^{-2}		
	<u> </u>	<u>I - 1 3 3</u>	1. 2×10 ⁻²	2.5×10^{-2}	1.8×10 ⁻²		
	葉菜摂取	<u>I - 1 3 1</u>	1.4×10^{-1}	3.2×10^{-1}	2.4×10^{-1}		
	************************************	<u>I - 1 3 3</u>	6.0×10^{-3}	1.6×10 ⁻²	1.5×10 ⁻²		
		<u> </u>	2.0×10^{-1}	4.4×10^{-1}	3.2×10^{-1}		
	<u>a.</u>	児及び乳児が, 摂取することに	<u>計算は,成人,</u> 生息する海産物 場合について行				
		<u>〜</u> 海水中のよう素 る実効線量」と			性液体廃棄物に		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		備考			
	b. 実効線量評価方	・原子炉領域周辺設備解体撤			
	放射性液体廃	去期間の廃止措置計画の具			
	<u>[2. 2. 1. 3(2) b. 3</u>		ち」で示すとおり	である。	体化に伴う変更
	c. 実効線量評価結		してはもの目の	五年44月11日	
				評価結果は、海	
	<u>水中における放射</u> るため,「原子炉				
	<u> </u>				
	<u>、 </u>				
				藻類を摂取する	
	場合の乳児であり				
	第3.2.43表 原子炉領域周辺	設備解体撤去期間	間における放射性	液体廃棄物	
	中のよう素によ	る実効線量(1,	2,3号炉合算	<u>.)</u>	
		T		単位: μ Sv / y)	
		成人	<u>幼児</u>	<u>乳児</u>	
	海藻類を摂取する場合	1. 1×10 ⁻¹	3.2×10^{-1}	4.0×10^{-1}	
	海藻類を摂取しない場合	1. 1×10 ⁻¹	2.5×10^{-1}	1.8×10 ⁻¹	
	の被ばく経路を考 取及び海産物摂取 行う。「2.2.2.1(1 ように,放射性気 設備解体撤去期間 できる。	医効線量 既要 は,空気中及び 慮し,成人,幼 によってよう) 放射性気体 体廃棄物中のよ 」における1号〕 」される放射性気 中濃度は,「原 結果を用いる。	海水中によう素 児及び乳児が吸 素を体内摂取し 廃棄物の推定放 う素について, 及び2号炉から 気体廃棄物中に 子炉設置許可申 放射性液体廃棄	が存在するとき 入摂取, 葉菜摂 た場合につべた 出量」で述べた 原子炉領域周辺 の放出量は無視 含まれるよう素 請書 添付書類 物中に含まれる	

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		備考				
	b. 実効線量評価方	・原子炉領域周辺設備解体撤去期間の廃止措置計画の具				
		放射性気体廃棄物中及び放射性液体廃棄物中のよう素を同時				
	に摂取する場合の			3)b. 美効線量	体化に伴う変更	
	評価方法」で示す c. 実効線量評価結		_			
			生液休麼棄物中	のよう素を同時		
	に摂取する場合の					
				藻類を摂取しな		
	い場合の幼児であ					
	 第3.2.44表 原子炉領域周i	刀設備解体撤去	期間におけるか	射性気体磨棄物		
				摂取する場合の		
		2, 3号炉合		· · · · · · · · · · · · · · · · · · ·		
				単位: μ Sv/y)		
		成人	<u>幼児</u>	<u> 乳児</u>		
	海藻類を摂取する場合	1. 2×10 ⁻¹	3.5×10^{-1}	4. 4×10 ⁻¹		
	海藻類を摂取しない場合	3.0×10^{-1}	6.9×10^{-1}	5.0×10^{-1}		
注)下線及び占線枠は、亦再签配を示すすのでもり亦再車頂に含まれい						

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後				備考
	2.2.2.4 直接線及びスカイシャイン線による線量				原子炉領域周辺設備解体撤
	保管エリアにおいて保管する解体保管物からの直接線及びスカ				去期間の廃止措置計画の具
	イシャイン線による			表に示すとお	体化に伴う変更
	り年間で最大約0.56 また 発電用原子		-)直接線及びスカイシ	/ ロイン/約1ヶト	
	<u>また、発電用原子</u> る実効線量は、人の				
	<u>50 μ Svを下回る。</u>	> 1 Tr. 42 · 1 BF		(C40 (H)	
	第3.2.45表 保管エリアにお	いて保管する	る解体保管物からの	直接線及び	
	<u>スカイシャイン</u>	·線による線』	量の評価結果		
		I		<u>'Δ΄</u> : μ Sv/y)	
	保管エリアを設置する場所	直接線	スカイシャイン線	<u>合計</u>	
	原子炉格納容器	1.6×10^{-3}	7.3×10^{-2}	5.6×10^{-1}	
	原子炉補助建家	2.9×10^{-1}	1.9×10^{-1}	3.0×10	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
変更前	変更後 2.2.2.5 線量評価結果 敷地境界外における2号及び3号炉からの放射性気体廃棄物中の希ガスのy線からの外部被ばくによる実効線量、1号炉からの放射性気体廃棄物中の粒子状物質による実効線量、放射性液体廃棄物中の放射性物質(よう素を除く)の摂取に伴う内部被ばくによる実効線量は、それぞれ年間約1.1 μ Sv、年間約1.3 μ Sv、年間約2.8 μ Sv及び年間約0.69 μ Svとなり、合計は年間約5.9 μ Svである。 この値は、「線量目標値に関する指針」に示される線量目標値の年間50 μ Svを下回る。 2.2.3 原子炉領域設備等解体撤去期間以降の評価については、原子炉領域設備等解体撤去期間以降の評価については、原子炉領域設備等解体撤去期間以降の評価については、原子炉領域設備等解体撤去期間に入るまでに廃止措置計画の変更の認可を受ける。	・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前			変更後		備考
	<u> </u>	第3.2.21表 (3	-14) 式の計算に用いたパ	ラメータ	•原子炉領域周辺設備解体撤
	<u>記号</u>	単位	パラメータ	<u>数値</u>	去期間の廃止措置計画の具
	A _{Ri}	<u>Bq</u>	原子炉領域周辺設備の 核種 i の推定放射能量	第3.2.22表に示す	体化に伴う変更
	<u>f</u> s	=	飛散率	第3.2.23表に	
	<u>f</u> _L	<u>–</u>	切断等による欠損割合	<u>第3.2.23表に</u> <u>示す</u>	
	<u>r 1</u>	=	汚染拡大防止囲いから の漏えい率		
	<u>D_{F1}</u>	=	<u>汚染拡大防止囲い局所</u> 排風機フィルタの捕集 <u>効率</u>	<u>第3.2.24表に</u> <u>示す</u>	
	<u>D_{F2}</u>	=	建家排気フィルタの捕 集効率		

____ 注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		備 考		
	第 3. 2. 22 表 原	子炉領域周辺設備の推	定放射能量	・原子炉領域周辺設備解体撤
	評価対象核種	推放機能		去期間の廃止措置計画の具
	1 H-3	放射化汚染 1.8×10 ¹⁰	二次的な汚染 3.0×10°	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3. 4×10 ²	$\frac{3.0 \times 10}{1.3 \times 10^5}$	体化に伴う変更
	3 <u>C-14</u>	6.8×10 ⁸	1. 4×10 ¹ ²	
	$\frac{4}{5}$ $\frac{S-35}{5}$	1.8×10 ⁶	$\frac{1.3 \times 10^{-11}}{2.7 \times 10^{7}}$	
	5 C1-36 6 Ca-41	$ \begin{array}{c c} 4.3 \times 10^{7} \\ 2.4 \times 10^{5} \end{array} $	$\begin{array}{c c} 2.7 \times 10^{7} \\ 9.0 \times 10^{5} \end{array}$	
	$\frac{3}{7}$ $\frac{3}{4}$ $\frac{3}{12}$	$\frac{2.1 \times 10^{7}}{5.1 \times 10^{7}}$	$\frac{5.0 \times 10^{5}}{7.1 \times 10^{5}}$	
	8 Fe-55	2.5×10^{11}	3. 2×10 ¹⁰	
	9 Fe-59 10 Co-58	$\frac{1.2 \times 10^{7}}{8.7 \times 10^{7}}$	$\frac{0}{7.7\times10^{-13}}$	
	11 Co-60	5. 1×10 ¹	$\frac{7.7 \times 10}{3.7 \times 10^{1.1}}$	
	12 Ni-59	2. 6×10 ⁹	3. 0×10 ¹⁰	
	13 Ni-63	2. 4×10 ¹	$\frac{3.2 \times 10^{12}}{2.6 \times 10^{3}}$	
	$\begin{array}{ c c c c c }\hline 14 & Z & n-6 & 5 \\ \hline 15 & S & e-7 & 9 \\ \hline \end{array}$	2. 2×10 ⁶ 5. 6×10 ³	$\begin{array}{c c} 2.6 \times 10^{3} \\ 2.9 \times 10^{5} \end{array}$	
	16 Sr - 90	$\frac{3.0 \times 10^{-4}}{1.7 \times 10^{4}}$	4. 1×10 ⁸	
	17 Z r - 9 3	1. 5×10 ²	4. 4×10 ⁴	
	18 N b - 9 4 19 M o - 9 3	$\frac{8.9 \times 10^{6}}{5.0 \times 10^{7}}$	$\frac{1.1 \times 10^{10}}{3.3 \times 10^{7}}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{5.0 \times 10^{-6}}{7.6 \times 10^{-6}}$	$\frac{3.3 \times 10^{-7}}{1.3 \times 10^{-7}}$	
	21 Ru-106	1.0	7.5×10^{3}	
	22 A g - 1 0 8 m	2.0×10^{7}	3.0×10^{7}	
	23 C d - 1 1 3 m 24 S n - 1 2 6	$\frac{1.2}{6.5 \times 10^{-2}}$	$\frac{1.3 \times 10^5}{3.7 \times 10^3}$	
	$\frac{24}{25}$ S b - 1 2 5	$\frac{0.3 \times 10^{-7}}{1.1 \times 10^{7}}$	$\frac{3.7 \times 10^{-7}}{4.7 \times 10^{7}}$	
	<u>26</u> T e − 1 2 5 m	4. 3×10 ⁶	1.7×10^{7}	
	$\frac{27}{29}$ $\frac{I-129}{124}$	1.6×10 ¹	5.6×10^3	
	$\begin{array}{ c c c c c c }\hline 28 & C & s - 1 & 3 & 4 \\ \hline 29 & C & s - 1 & 3 & 7 \\ \hline \end{array}$	$\frac{4.9 \times 10^{7}}{1.8 \times 10^{4}}$	$\frac{4.8 \times 10^6}{1.4 \times 10^9}$	
	$\frac{20}{30}$ $\frac{2}{8}$ $\frac{2}{3}$ $\frac{2}{3}$	6. 2×10 ⁵	$\frac{1.1 \times 10^8}{2.6 \times 10^8}$	
	31 La-137	6. 1×10 ²	4.6×10^{2}	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.3 1.8×10 ⁶	$ \begin{array}{c c} 2.1 \times 10^{2} \\ \hline 6.5 \times 10^{7} \end{array} $	
	34 Sm-151	$\frac{1.8 \times 10}{2.0 \times 10^8}$	$\frac{0.3 \times 10}{1.2 \times 10^8}$	
	35 Eu-152	3.0×10^{9}	2.2×10^{7}	
	$\frac{36}{27}$ Eu – 1 5 4	1.8×10 ⁸	6.1×10^{7}	
	37 Ho-166m 38 Lu-176	$\frac{8.4 \times 10^{\circ}}{3.8 \times 10^{7}}$	$\frac{2.3 \times 10^{3}}{7.7}$	
	39 I r - 1 9 2 m	1. 3×10 ⁶	1.8×10^{7}	
	40 Pt-193	4. 1×10 ⁶	3.1×10^{10}	
	41 U-234 42 U-235	6. 5×10 ⁵ 3. 0×10 ⁴	$\frac{4.2 \times 10^4}{1.8 \times 10^2}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3.0 \times 10}{1.3 \times 10^{-1}}$	$\frac{1.8 \times 10}{4.2 \times 10^3}$	
	44 <u>U-238</u>	6. 4×10 ⁵	6. 0×10 ³	
	45 N p - 2 3 7 46 P u - 2 3 8	$\frac{1.1 \times 10^{-3}}{2.4 \times 10^{-4}}$	$\frac{1.4 \times 10^4}{3.3 \times 10^8}$	
	46 Pu-238 47 Pu-239	5. 8×10 ⁻³	$\frac{3.3 \times 10^{-6}}{7.2 \times 10^{-6}}$	
	48 Pu-240	3.5×10^{-1}	1. 4×10 ⁷	
	49 Pu-241	2.2×10^{-3}	1.1×10 ⁹	
	50 Pu-242 51 Am-241	$ \begin{array}{c c} 2.0 \times 10^{-12} \\ \hline 1.3 \times 10^{-4} \end{array} $	1.8×10 ⁵ 1.2×10 ⁸	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1.3 \times 10}{5.7 \times 10^{-10}}$	$\frac{1.2 \times 10}{3.3 \times 10^5}$	
	53 Am-243	5.7×10^{-16}	5. 0×10 ⁶	
	54 Cm-242	4. 7×10 ⁻¹⁰	2.8×10 ⁵	
	55 Cm-244	<u>0</u>	1.4×10 ⁹	
	(注) 2027 年 4 月 1 日時	<u> </u>		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後						備考
		<u> </u>	§ 3. 2. 23	3表 放射性物質の			•原子炉領域周辺設備解体撤
		対象物		解体工法	飛散率** f _s (%)	<u>欠損割合</u> f _L (%)	去期間の廃止措置計画の具 体化に伴う変更
	 <u>二次的</u>	な <u>汚染</u>	2	気中機械的切断	<u>30</u>	<u>7. 5</u>	
	によるも	<u> </u>		気中熱的切断	<u>70</u>	<u>7. 5</u>	
	放射化剂			気中機械的切断	2.5	<u>7. 5</u>	
	よるもの	<u> </u>		気中熱的切断	<u>11</u>	<u>7. 5</u>	
	※:出典	電中研ハン	ンドブッ	<u>)ク</u>			
	第 3. 2. 24	4表 汚染拡		<u> </u>			
		<u> </u>		建家排気フィルタの			
		<u>パラ</u>	ラメーク		漏えい率	捕集効率	
		汚染拡大防	止囲い	蒸気発生器, 1次冷却材ポンプ	5×10 ⁻³ **1	_	
	<u>r</u> 1	からの漏えい	<u>い率</u>	上記以外	<u>1</u>	_	
	D _{F1}	汚染拡大防 局所排風機			=	<u>0. 99^{**1}</u>	
	DFI	タの捕集効		<u>ガス状^{*2}</u>	=	0	
	D	建家排気フ	イルタ	粒子状	<u>=</u>	0. 99*1	
	<u>D_{F2}</u>	の捕集効率	-	<u>ガス状^{*2}</u>	<u>=</u>	0	
		典 電中研/ 属の気中熱的		<u>ブック</u> 特のH-3及びC-	1 4		
注)下線及び点線枠は、変更筒所を示すものであり変更事項に含まない。							

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前			変更後		備考
	<u>第</u>	5 3. 2. 27 表 (3	-16) 式の計算に用いたパ	ラメータ	•原子炉領域周辺設備解体撤
	<u>記号</u>	<u>単位</u>	パラメータ	<u>数值</u>	去期間の廃止措置計画の具 体化に伴う変更
	D/Q	μ Sv/Bq/MeV	<u>放射性雲に関する相対</u> <u>線量</u>	第3.2.31表に示す	
	<u>E i</u>	<u>MeV</u>	<u>核種 i の γ 線実効エネ</u> <u>ルギ</u>	第3.2.32表に示す	
	第 3. 2. 28 表	(3-17) 式及で	び (3-19) 式の計算に用り	いたパラメータ	
	記号	<u>単位</u>	パラメータ	<u>数値</u>	
	V _{Gi}	m∕s	核種 i の乾燥沈着速度	<u>0. 01**</u>	
	(χ/Q) _D	s/m³	地表沈着に関する相対 <u>濃度</u>	第3.2.31表に示す	
	<u> </u>	<u>s</u> -1	<u>核種 i の崩壊定数</u>	第3.2.33表に示す	
	<u>λ_{si}</u>	s ⁻¹	<u>土壌からの核種 i の系</u> <u>外除去率</u>	<u>0 *</u>	
	t _G	<u>s</u>	放射性物質の沈着を考 <u>慮する期間</u> <u>コンクリート</u> 金 属	3.2×10 ⁷ (1年) * 3.2×10 ⁷ (1年) *	
	<u>K_{A i}</u>	(μSv/y)/ (Bq/m²)	地表沈着核種 i からの 実効線量換算係数	第3.2.34表に示す	
	※:出典 電	中研ハンドブック		<u> </u>	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前			変更後		備考
	<u></u> 第	3.2.29表 (3	-21) 式の計算に用いたパ	ラメータ	・原子炉領域周辺設備解体撤
	記号	<u>単位</u>	パラメータ	<u>数値</u>	去期間の廃止措置計画の具 体化に伴う変更
	<u>B</u> _r	$\underline{\mathbf{m}^3 / \mathbf{d}}$	成人の呼吸率	<u>22. 2**</u>	
	K _{Ri}	<u>μ</u> Sv/Bq	呼吸摂取による核種 i の実効線量換算係数	第3.2.35表に示す	
	(χ/Q) _B	s/m^3	<u>呼吸摂取に関する相対</u> <u>濃度</u>	第3.2.31表に示す	
	※: 出典 電中	中研ハンドブック			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

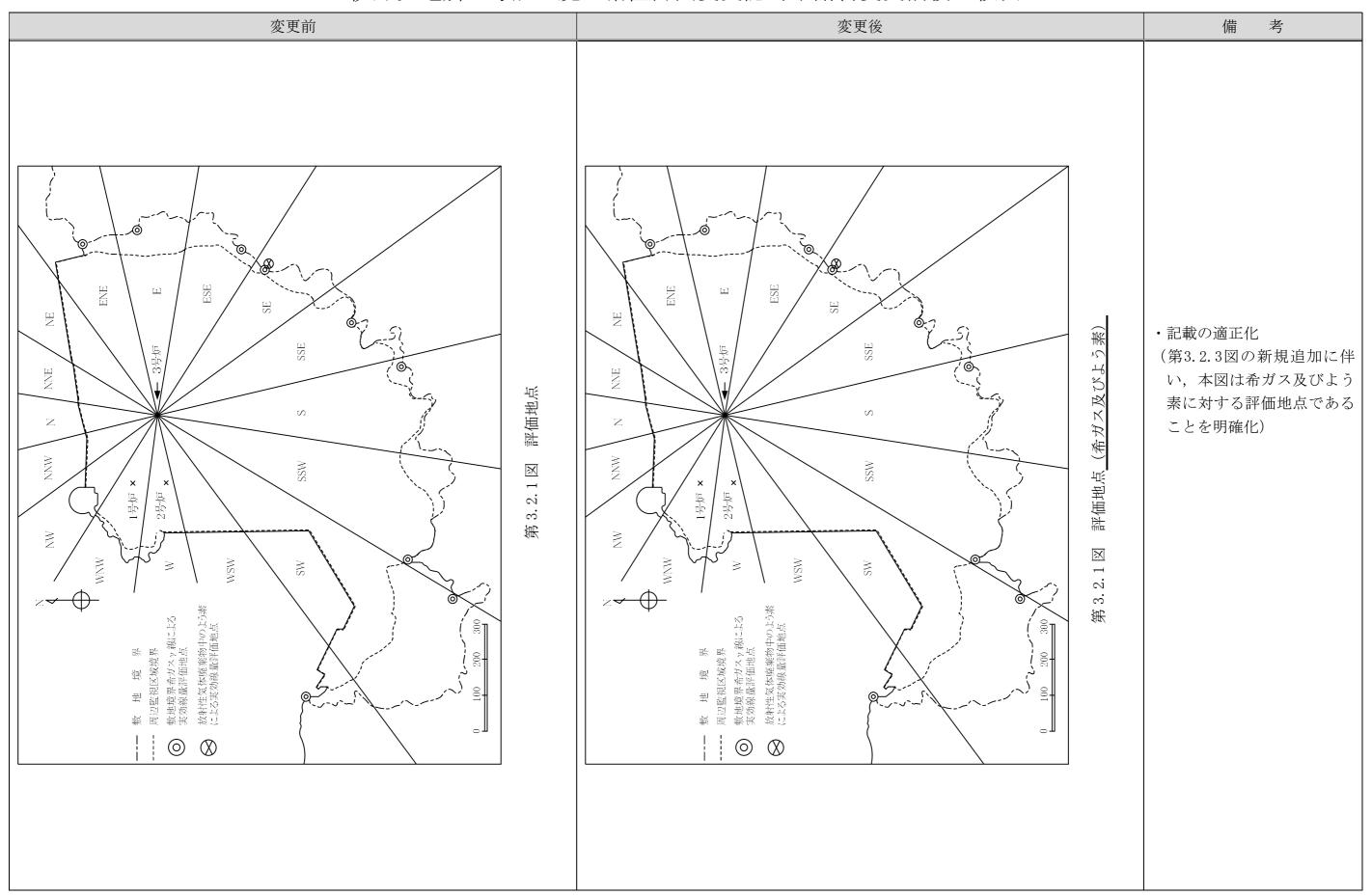
変更前			変更後		備考
	第 3. 2. 30 表		(3-28) 式の計算に用いた	パラメータ	・原子炉領域周辺設備解体撤
	⇒ 7 □	(1/2)	.0- > =	¥1. I++	去期間の廃止措置計画の具 体化に伴う変更
	<u>記号</u>	<u>単位</u>	<u>パラメータ</u>	<u>数值</u>	1110011 700
	RLVi	=	農作物Vに関する核種 iの葉面付着割合(乾		
			燥沈着) 葉 菜 米 根 菜	0. 2* 0. 25* 0. 2*	
	F _{EVi}	=	農作物Vに関する核種 iの葉面から可食部へ の移行係数	第3.2.36表に示す	
	<u>λ wv i</u>	<u>s</u> -1	農作物 V に関する核種 i のウェザリング除去 率	5.7×10 ⁻⁷ *	
	Yv	<u>kg∕m²</u>	農作物Vの栽培密度 <u>葉 菜</u> <u>米</u> 根 菜	2. 8* 0. 37* 2. 2*	
	$\frac{(\chi/Q)_{F}}{}$	<u>s∕m³</u>	農作物摂取に関する相 対濃度	第3.2.31表に示す	
	t _v	<u>s</u>	農作物 V への核種 i の沈着を考慮する期間葉 菜米根 菜	2. 1×10 ⁷ (240日) * 1. 8×10 ⁷ (210日) * 1. 6×10 ⁷ (180日) *	
	C _{FVi}	(Bq/kg) / (Bq/kg-soil)	土壌から農作物 V への 核種 i の移行割合	第3.2.37表に示す	
	※:出典 電	中研ハンドブック			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

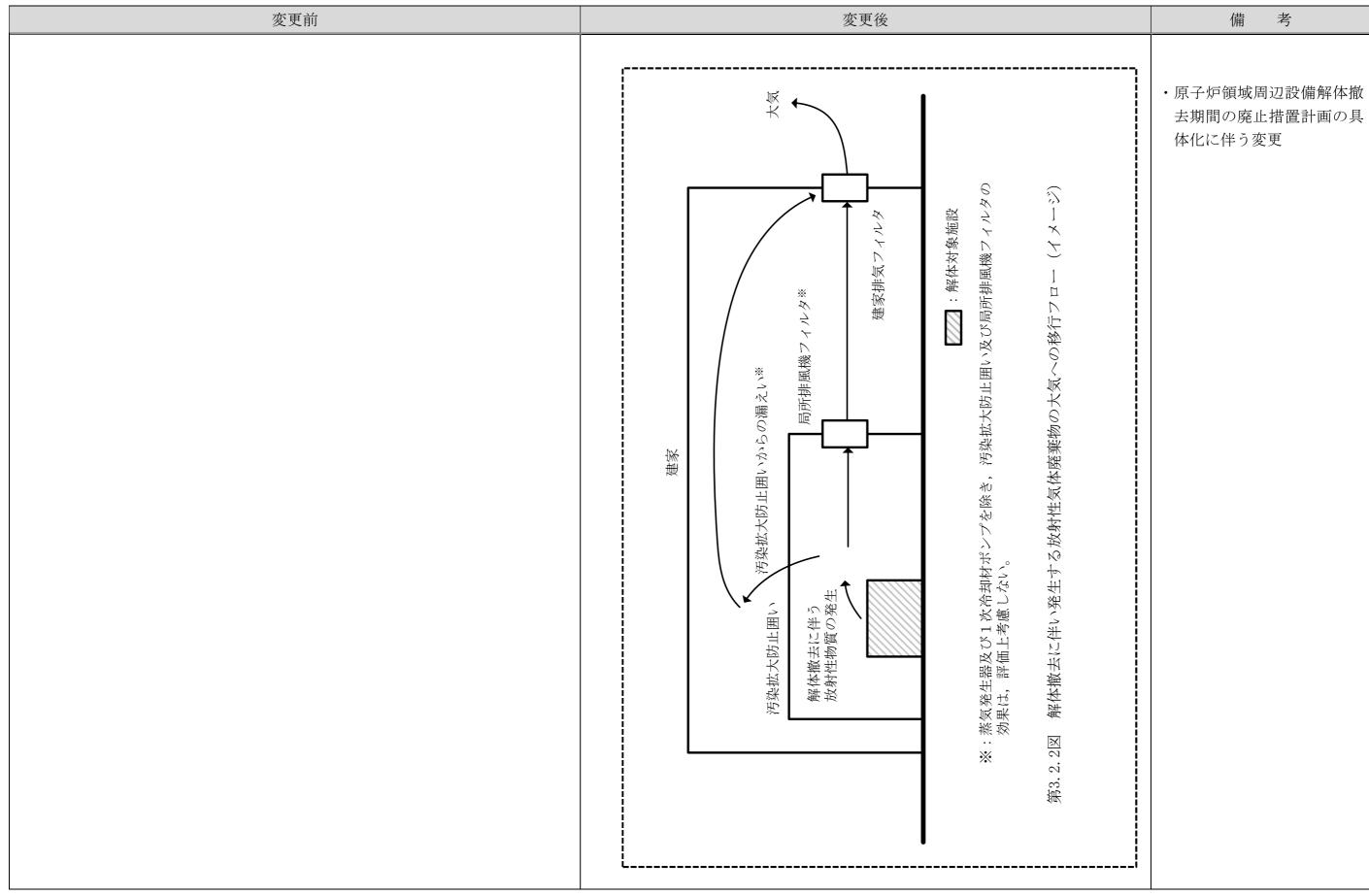
変更前			備 考		
	第 3. 2. 30 表		(3-28) 式の計算に用いた	パラメータ	・原子炉領域周辺設備解体撤
	司 <u>中</u>	(2/2)	パラノーカ	粉估	去期間の廃止措置計画の具 体化に伴う変更
	<u>記号</u>	<u>単位</u>	<u>パラメータ</u>	<u>数值</u>	
	Sv	<u>kg∕m²</u>	農作物 V に関する実効 地表面密度 葉 菜 光 根 菜	190* 150* 280*	
	Fcv	<u>kg−C∕kg</u>	農作物 V 中の炭素重量 割合 葉 菜 米 根 菜	$ \begin{array}{r} \underline{2.8 \times 10^{-2} *} \\ \underline{4.1 \times 10^{-1} *} \\ \underline{7.8 \times 10^{-2} *} \end{array} $	
	<u>C</u> _A	kg−C/m³	空気中の炭素重量割合	1.8×10 ⁻⁴ *	
	K _{Fi}	<u>μ Sv/Bq</u>	経口摂取による核種 i の実効線量換算係数	第3.2.38表に示す	
	$\overline{\mathbf{W}_{\mathrm{V}}}$	g∕d	人体の農作物Vの摂取 量 葉菜 米 根菜	100* 320* 200*	
	F _{KV}	<u> </u>	農作物Vの市場希釈係 数	<u>1*</u>	
	※:出典 電	 中研ハンドブック			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

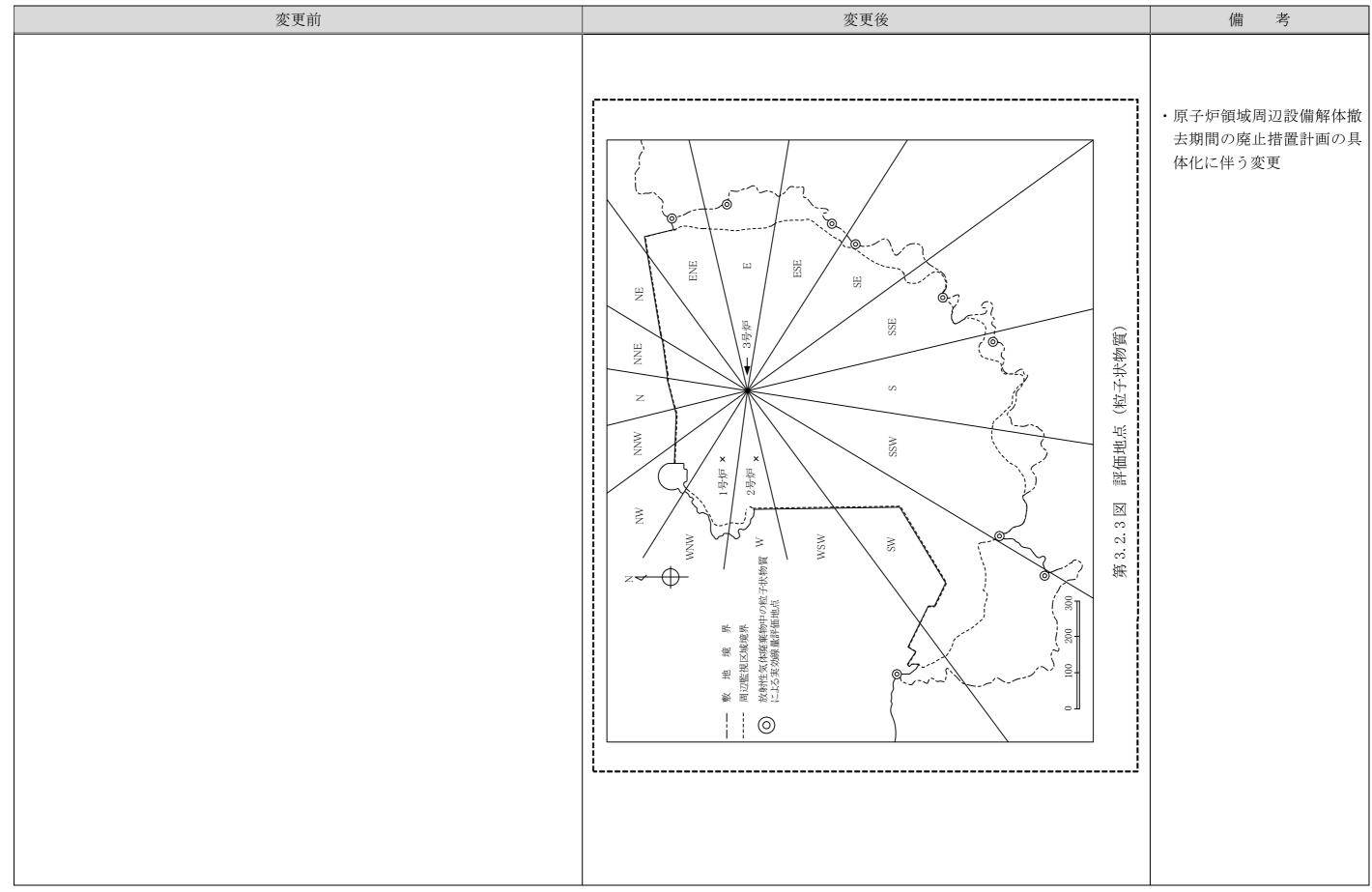
変更前			備考			
	第 3. 2. 31 表		E用する相対線量	(D/Q) 及び村	目対濃度	・原子炉領域周辺設備解体撤
		(χ/Q)		<u> </u>		去期間の廃止措置計画の具
	<u> </u>	<u>プメータ</u>	<u>単位</u>	<u>数値</u>	方位・距離**	体化に伴う変更
	D/Q	<u>放射性雲に</u> 関する相対線量	<u>μ Sv/Bq/MeV</u>	1.4×10 ⁻¹³	<u>W S W</u> 890m	
	(χ/Q) _D	地表沈着に 関する相対濃度				
	(χ/Q) _B	関する相対濃度	<u>s∕m³</u>	1.1×10^{-5}	<u>WSW</u> 890m	
	(χ/Q) _F	関する相対濃度	・			
	<u>※:万位・</u> 距	「離は3号炉からの方				
		第3.2.32表				
		<u>核種</u>		γ線実効エネル <u>Ε_i (MeV)</u>		
		<u>Co-60</u>	<u>2. 5</u>			
	※: 出典 電	中研ハンドブック	1			
注) 下線及び点線枠は 変更箇所を示すものであり変更事項に含まない						


注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		備 考		
		第3.2.33表 核	種 i の崩壊定数	•原子炉領域周辺設備解体撤
	 <u>核</u> 種	重	崩壊定数※	去期間の廃止措置計画の具 体化に伴う変更
		_	<u>λ</u> _i (s ⁻¹)	1414に件り変更
	<u>C – :</u>	1 4	3.836×10^{-12}	
	<u>C o – (</u>	<u> 6 0</u>	4.171×10^{-9}	
	※:出典 電中研ハン	<u>ノドブック</u>		
	第2.9.9	4丰	:なるの字が領具協管反称	
	<u></u>	4衣 地衣优有核性	<u>i からの実効線量換算係数</u> 実効線量換算係数 <u>**</u>	
	<u>核種</u>	К	<u> </u>	
	<u>C o - 6 0</u>	IXA1	$\frac{2.2 \times 10^{-2}}{}$	
	<u></u> ※:出典 電中研ハン	 ノドブック		
	第3.2.35	表 呼吸摂取による	る核種iの実効線量換算係数	
	 <u>核種</u>		実効線量換算係数*	
			K_{Ri} (μ Sv/Bq)	
	<u>Co-60</u>		3.1×10^{-2}	
	<u>Pu-238</u>		1.1×10^{2}	
	<u>Am-241</u>		9.6×10^{1}	
	<u>Cm-244</u>		5. 7×10 ¹	
	※:出典 電中研ハン			


注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		変見	更後		備 考
	第3.2.36表	農作物∨に関する核種	重iの葉面から可食部	部への移行係数	•原子炉領域周辺設備解体撤
			移行係数※		去期間の廃止措置計画の具 体化に伴う変更
	<u>核種</u>		F _{EVi}		
		葉菜	<u>米</u>	根菜	
	<u>C-14</u>	<u>1</u>	<u>0. 1</u>	<u>0. 1</u>	
	<u>Co-60</u>	<u>1</u>	<u>0. 1</u>	<u>0. 05</u>	
	※:出典 電中研ハ	ンドブック			
	第3.2.	37表 土壌から農作	物Vへの核種iの科	多行割合	
	2		移行割合*		
	<u>核種</u>	CF _{Vi} ((Bq/kg) / (Bq/kg	g-soil))	
		葉菜	<u>米</u>	根菜	
	<u>Co-60</u>	9.4×10^{-3}	1.2×10^{-2}	2.0×10^{-3}	
	※:出典 電中研ハ	ンドブック			
	第3.2.3	8表 経口摂取による	る核種 i の実効線量排	奥 算係数	
			実効線量換算係数*		
	<u>核種</u>		K_{Fi} (μ Sv/Bq)		
	<u>C-14</u>		5.8×10^{-4}		
	<u>C o - 6 0</u>		3.4×10^{-3}		
	※:出典 電中研ハ	ンドブック			
注)下線及び点線枠は 変更筒所を示すものであり変更事項に含まない。					


注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

添付書類四 廃止措置中の過失、機械又は装置の故障、地震、火災等が あった場合に発生することが想定される事故の種類、程度、 影響等に関する説明書

廃止措置中の過失、機械又は装置の故障、地震、火災等があった場合に発生することが想定される事故の種類、程度、影響等に関する説明書の記述の一部を、伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

変更前	変更後	備考
添付書類四 廃止措置中の過失、機械又は装置の故障、地震、火災等があった場合に発生することが想定される事故の種類、程度、影響等に関する説明書 1号炉の廃止措置中に想定される過失、機械又は装置の故障、地震、火災その他の災害があった場合に放射性物質の放出を伴う事故とその影響を選定し、敷地境界外における周辺公衆の最大の実効線量を評価することにより、1号炉の廃止措置が周辺公衆に対して著しい放射線被ばくのリスクを与えないことを示す。	する説明書 1号炉の廃止措置中に想定される過失、機械又は装置の故障、地震、火災 その他の災害があった場合に <u>発生することが想定される</u> 放射性物質の放出 を伴う事故とその影響を選定し、敷地境界外における周辺公衆の最大の実効	・記載の適正化 (タイトルとの整合)
1. 解体工事準備期間の事故時における周辺公衆の受ける線量評価 解体工事準備期間の事故時における周辺公衆の受ける線量評価は、「発 電用軽水型原子炉施設の安全評価に関する審査指針」及び「気象指針」を 参考とし、解体工事準備期間の事故を想定して実施する。	1. 解体工事準備期間の事故時における周辺公衆の受ける線量評価解体工事準備期間の事故時における周辺公衆の受ける線量評価は、「発電用軽水型原子炉施設の安全評価に関する審査指針」 <u>(以下「安全評価指針」という。)</u> 及び「気象指針」を参考とし、解体工事準備期間の事故を想定して実施する。	・記載の適正化 (略称の追加)
2. 解体工事準備期間の事故時における周辺公衆の受ける線量評価のまとめ 解体工事準備期間の事故として「燃料集合体の落下」及び「放射性気体廃棄物処理施設の破損」を想定した場合、環境へ放出される放射性物質の放出量は少なく、周辺公衆に対して著しい放射線被ばくのリスクを与えることはない。		・記載の適正化(番号の変更)

原子炉領域周辺設備解体撤去期間<u>以降</u>の事故時における周辺公衆の受ける線量評価<u>については、原子炉領域周辺設備解体撤去期間に入るまでに</u> 廃止措置計画の変更の認可を受ける。 2. 原子炉領域周辺設備解体撤去期間の事故時における周辺公衆の受ける 線量評価

原子炉領域周辺設備解体撤去期間の事故時における周辺公衆の受ける線量評価<u>は、「安全評価指針」、「気象指針」及び「電中研ハンドブック」を参考とし、原子炉領域周辺設備解体撤去期間の事故を想定して実施す</u>る。

・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更

2.1 事故の想定

伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表

原子炉領域周辺設備解体撤去期間は、管理区域内設備の解体撤去に 伴い粒子状物質が発生することを踏まえ、廃止措置工事に係る過失、 機械又は装置の故障、地震、火災、その他の災害による原子炉施設の 事故の種類、程度、影響等により想定する事故の中から最も放出量の 大きい事故を想定する。解体撤去に伴い発生する粒子状物質は建家排 気フィルタ及び局所排風機フィルタに捕集されることを考慮すると、 これらのフィルタに付着している粒子状物質全量が大気へ放出される 事象が最も放出量が大きくなることから、これらのフィルタの破損を 想定する。

なお,評価上は,局所排風機フィルタによる捕集を考慮せず,粒子 状物質全量が建家排気フィルタに捕集されたものとする。

解体工事準備期間で想定した事故のうち,「1.2 燃料集合体の落下」については,1号炉原子炉補助建家内の使用済燃料貯蔵設備に貯蔵していた使用済燃料は搬出を完了したことから,また,「1.3 放射性気体廃棄物処理施設の破損」については,希ガスは解体工事準備期間で実施した作業に伴い放出されていることから,原子炉領域周辺設備解体撤去期間以降の事故としては想定しない。

2.2 建家排気フィルタの破損

(1) 事故の想定

建家排気フィルタの破損は、建家排気フィルタが火災、爆発、落下、衝突等によって破損し、建家排気フィルタに付着していた粒子 状物質が大気へ放出される事象とする。

周辺公衆に対する被ばく経路には、短期的に被ばくする経路(放射性雲からのγ線による外部被ばく及び呼吸摂取による内部被ばく)及び放射性物質の放出後に長期的に被ばくする経路(地表沈着物からのγ線による外部被ばく及び農作物摂取等による内部被ばく)がある。事故時においては、付近への立入制限、土地表面の除染、農

変更前	変更後	備考
	作物の摂取制限等の措置が行われることから, 短期的に被ばくする	・原子炉領域周辺設備解体撤
	経路について評価するものとする。	去期間の廃止措置計画の具
	したがって、周辺公衆の受ける線量は、建家排気フィルタが地表	体化に伴う変更
	面に落下し、地表面から大気中に放出された粒子状物質が、放射性	
	雲となって風下に流れ,この放射性雲からのγ線による外部被ばく	
	及び呼吸摂取による内部被ばくを対象に評価する。	
	(2) 評価対象核種	
	建家排気フィルタの破損における評価対象核種は,「添付書類五	
	核燃料物質による汚染の分布とその評価方法に関する説明書」で評	
	価した核種のうち、各評価経路における線量寄与の割合1%以上と	
	なる核種を対象とする。	
	(3) 放出量評価方法	
	建家排気フィルタの破損により大気へ放出される粒子状物質の量	
	は、以下の条件により算出する。	
	a. 管理区域内設備の解体撤去に伴い発生する粒子状物質(保守的	
	にガス状の放射性物質を含む)全量が,建家排気フィルタに付着	
	<u>しているものとする。</u>	
	b. 原子炉領域周辺設備解体撤去期間の期間内における建家排気フ	
	<u>イルタの交換は考慮しない。</u>	
	c. 事故により、建家排気フィルタに付着している粒子状物質全量	
	が大気中に放出されるものとする。	
	上記の条件により, 建家排気フィルタに付着している粒子状物	
	質が大気へ放出される量を計算する式を次に示す。	
	$\underline{Q_{Ni} = A_{Ri} \cdot F_A} \qquad \dots \qquad (4-2)$	
	Q _{Ni} : 事故による核種 i の大気中への放出量 (Bq)	
	A _{Ri} :原子炉領域周辺設備の核種iの推定放射能量 (Bq)	
	<u>F A : 放射性物質の気中移行割合 (-)</u>	
	$F_A = f_S \times f_L$	
	<u>f</u> s:飛散率 (一)	
	f L : 切断等による欠損割合 (-)	
	(4-2) 式の計算に用いたパラメータを第4.2.1表に示す。	
	d. 線量評価に必要な拡散,気象条件としては,放射性物質が地表面	
	から放出されると仮定し、「気象指針」に基づいて計算された相対	
	<u>濃度(χ/Q)及び相対線量(D/Q)を用いる。</u>	
注) 下線及び点線枠は 変更箇所を示すものであり変更事項に含まない		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備考
	(4) 線量評価方法 a. 放射性雲からのγ線による外部被ばく	・原子炉領域周辺設備解体撤去期間の廃止措置計画の具
	放射性雲からのγ線による外部被ばくは次式を用いて計算する。	体化に伴う変更
	$H_{\gamma} = \sum_{i} H_{\gamma i} \qquad \dots $	
	$H_{\gamma i} = K \cdot (D/Q) \cdot E_i \cdot Q_{Ni} \qquad (4-4)$	
	H_{γ} : 放射性雲からの γ 線による実効線量 (Sv) $H_{\gamma i}$: 核種 i に関する放射性雲からの γ 線による実効線量	
	(Sv)	
	K : 空気カーマから実効線量への換算係数 (Sv/Gy)	
	$D/Q: \gamma 線エネルギ 1 MeV における相対線量 (Gy/Bq/MeV)$ E_i : 核種 i の γ 線実効エネルギ (MeV)	
	b. 呼吸摂取による内部被ばく	
	呼吸摂取による内部被ばくは次式を用いて計算する。	
	$H_{I} = \sum_{i} H_{Ii} \qquad \cdots \cdots (4-5)$	
	$H_{\text{I i}} = R \cdot H_{\infty} \cdot (\chi / Q) \cdot Q_{\text{N i}} \qquad (4-6)$	
	H _I : 呼吸摂取による実効線量 (Sv) H _{Ii} : 核種 i に関する呼吸摂取による実効線量 (Sv)	
	R : 呼吸率	
	H _∞ : 核種 i の呼吸摂取による実効線量換算係数 (Sv/Bq)	
	$\chi/Q:$ 相対濃度 (s/m^3) $(4-3) \sim (4-6)$ 式の計算に用いたパラメータを第 4.2.2	
	表及び第4.2.3表に示す。	
	(5) 気象条件 線量評価においては,2001年1月から2001年12月の1年間におけ	
	る気象データを使用する。また、評価に使用する気象データは、近年	
	の気象データによる異常年検定を行い、異常がないことを確認してい	
	<u>る。</u> (6) 評価結果	
	建家排気フィルタの破損によって、大気中に放出される粒子状物質	
	の量を第4.2.4表に示す。敷地境界外における最大の実効線量を評価	
	<u>した結果を第4.2.5表に示す。</u>	
注)下線及び点線枠は 変更箇所を示すものであり変更事項に含またい		

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備考
変更前	変更後 2.3 原子炉領域周辺設備解体撤去期間の事故時における周辺公衆の受ける線量評価のまとめ原子炉領域周辺設備解体撤去期間の事故として「建家排気フィルタの破損」を想定した場合、環境へ放出される放射性物質の放出量は少なく、周辺公衆に対して著しい放射線被ばくのリスクを与えることはない。 3. 原子炉領域設備等解体撤去期間以降の事故時における周辺公衆の受ける線量評価原子炉領域設備等解体撤去期間以降の事故時における周辺公衆の受ける線量評価については、原子炉領域設備等解体撤去期間に入るまでに廃止措置計画の変更の認可を受ける。	備 考 ・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後			備考	
	<u>第4.2.1表 (4-2)式の計算に用いたパラメータ</u>			•原子炉領域周辺設備解体撤	
	記号	<u>単位</u>	パラメータ	<u>数值</u>	去期間の廃止措置計画の具 体化に伴う変更
	A _{R i}	<u>Bq</u>	原子炉領域周辺設備の 核種 i の推定放射能量	第4.2.6表に示す	
	f _s	= =	飛散率 切断等による欠損割合	► <u>第4.2.7表に</u> <u>示す</u>	
	<u>- L</u>	_		<u> </u>	
	第 4. 2. 2 才	長 (4-3)式	及び(4 - 4)式の計算に	<u> 用いたパラメータ</u>	
	記号	<u>単位</u>	パラメータ	<u>数値</u>	
	<u>K</u>	Sv/Gy	空気カーマから実効線 量への換算係数	1*	
	<u>D/Q</u>	<u>Gy/Bq/MeV</u>	γ線エネルギ1 MeVに おける相対線量	第4.2.8表に示す	
	<u>E i</u>	<u>MeV</u>	<u>核種 i の γ 線実効エネ</u> <u>ルギ</u>	第4.2.9表に示す	
	※:出典 電	中研ハンドブック	-		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後			備 考	
	<u>第4.2.3表 (4-5) 式及び (4-6) 式の計算に用いたパラメータ</u>			•原子炉領域周辺設備解体撤	
	<u>記号</u>	<u>単位</u>	パラメータ	<u>数値</u>	去期間の廃止措置計画の具 体化に伴う変更
	<u>R</u>	$\underline{m}^3/\underline{s}$	<u>呼吸率</u>	8. 61×10 ⁻⁵ *	
	$\underline{\mathrm{H}_{\infty}}$	<u>Sv/Bq</u>	核種 i の呼吸摂取によ る実効線量換算係数	第4.2.10表に示す	
	<u>χ/Q</u>	s/m^3	相対濃度	第4.2.8表に示す	
	※: 出典 電	中研ハンドブック	_		
	第4.2.4表 建	家排気フィルタ	の破損による核種の大気中	1への放出量	
			設備解体撤去期間)_		
		<u>核種</u>	力	<u>女出量</u>	
	<u>C</u>	20 - 60	<u>約1.5</u>	5×10 ¹⁰ Bq	
	<u>N</u>	√ i − 6 3	<u>約 9. 3</u>	3×10^{10} Bq	
	<u>N</u>	1b - 94	約 3. 0	$0 \times 10^8 \text{Bq}$	
	<u> </u>	0 u - 2 3 8	約 9.3	3×10 ⁶ Bq	
	<u>A</u>	m-241	約 3. 4	1×10 ⁶ Bq	
	<u>C</u>	Cm-244	<u>約 4. 1</u>	$\times 10^7 \text{Bq}$	
注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。					

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更	備考	
	第4.2.5 表 建家排気フィルタの破損 (原子炉領域周辺設備解	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具	
	評価項目	評価結果	体化に伴う変更
	<u>実効線量</u>	約8.9×10 ⁻² mSv	

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		変更後		備考
	第4.2.6表 原子炉領域周辺設備の推定放射能量			• 原子炉領域周辺設備解体撤
	評価対象核種	推定放射能量		去期間の廃止措置計画の具
	1 H-3	<u>放射化汚染</u> 1.8×10 ¹⁰	<u>二次的な汚染</u> 3.0×10°	体化に伴う変更
	<u>2</u> B e − 1 0	3.4×10^{2}	1. 3×10 ⁵	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6. 8×10 ⁸ 1. 8×10 ⁶	$\frac{1.4 \times 10^{12}}{1.3 \times 10^{-11}}$	
	5 C1-36	4. 3×10 ⁷	$\frac{1.3 \times 10}{2.7 \times 10^7}$	
	<u>6</u>	2.4×10^{5}	9.0×10^{5}	
	$\frac{7}{9}$ $\frac{\text{Mn} - 54}{\text{Frank 5}}$	5.1×10^{7}	$\frac{7.1\times10^5}{3.2\times10^{10}}$	
	$\begin{array}{ c c c c c c }\hline 8 & Fe - 55 \\\hline 9 & Fe - 59 \\\hline \end{array}$	$\frac{2.5 \times 10^{11}}{1.2 \times 10^{7}}$	0	
	10 Co-58	8.7×10^{7}	7.7×10^{-13}	
	$\frac{11}{10}$ $\frac{\text{C o} - 6.0}{\text{N}}$	5. 1×10 ¹¹	$\frac{3.7 \times 10^{11}}{2.0 \times 10^{10}}$	
	12 N i - 5 9 13 N i - 6 3	$\frac{2.6 \times 10^9}{2.4 \times 10^{11}}$	$\frac{3.0 \times 10^{10}}{3.2 \times 10^{12}}$	
	14 Z n - 6 5	$\frac{2.1 \times 10^{6}}{2.2 \times 10^{6}}$	$\frac{6.2 \times 10^{3}}{2.6 \times 10^{3}}$	
	$\begin{array}{c c} \hline 15 & Se - 79 \\ \hline 16 & 9 \\ \hline \end{array}$	$\frac{5.6 \times 10^3}{1.7 \times 10^4}$	2. 9×10 ⁵	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1.7 \times 10^4}{1.5 \times 10^2}$	$\frac{4.1 \times 10^8}{4.4 \times 10^4}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1.3 \times 10}{8.9 \times 10^6}$	$\frac{4.4 \times 10}{1.1 \times 10^{10}}$	
	19 Mo - 93	5. 0×10 ⁷	3.3×10^{7}	
	20 T c - 9 9 21 R u - 1 0 6	$\frac{7.6 \times 10^6}{1.0}$	$\frac{1.3\times10^{7}}{7.5\times10^{3}}$	
	22 A g - 1 0 8 m	$\frac{1.0}{2.0 \times 10^7}$	$\frac{7.3 \times 10}{3.0 \times 10^{7}}$	
	23 C d - 1 1 3 m	1.2	1. 3×10 ⁵	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.5×10^{-2}	$\frac{3.7 \times 10^3}{4.7 \times 10^7}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1.1 \times 10^{7}}{4.3 \times 10^{6}}$	$\frac{4.7 \times 10^{7}}{1.7 \times 10^{7}}$	
	27 <u>I - 1 2 9</u>	1. 6×10 ¹	5.6×10^{3}	
	$\frac{28}{20}$ $\frac{C \text{ s} - 1 \ 3 \ 4}{C \ 1 \ 3 \ 7}$	4.9×10^{7}	$\frac{4.8 \times 10^6}{1.4 \times 10^9}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 8×10 ⁴ 6. 2×10 ⁵	$\frac{1.4 \times 10^9}{2.6 \times 10^8}$	
	31 La-137	6.1×10^{2}	4.6×10^{2}	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.3	$\frac{2.1 \times 10^2}{6.5 \times 10^7}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1.8 \times 10^6}{2.0 \times 10^8}$	$\frac{6.5 \times 10^{7}}{1.2 \times 10^{8}}$	
	35 E u – 1 5 2	3.0×10^{9}	2.2×10^{7}	
	36 E u - 1 5 4	1.8×10 ⁸	$\frac{6.1 \times 10^{7}}{2.3 \times 10^{9}}$	
	37 Ho-166m 38 Lu-176	$\frac{8.4 \times 10^6}{3.8 \times 10^7}$	2. 3×10 ⁹ 7. 7	
	39 <u>I r - 1 9 2 m</u>	1. 3×10 ⁶	1.8×10^{7}	
	40 Pt-193	4. 1×10 ⁶	$\frac{3.1 \times 10^{10}}{4.2 \times 10^{4}}$	
	41 <u>U-234</u> 42 <u>U-235</u>	$\frac{6.5 \times 10^{5}}{3.0 \times 10^{4}}$	$\frac{4.2 \times 10^4}{1.8 \times 10^2}$	
	43 U-236	1. 3×10 ⁻¹	4.2×10^{3}	
	44 U-238	$\frac{6.4 \times 10^5}{1.1 \times 10^{-3}}$	$\frac{6.0 \times 10^3}{1.4 \times 10^4}$	
	45 N p - 2 3 7 46 P u - 2 3 8	$\frac{1.1 \times 10^{-3}}{2.4 \times 10^{-4}}$	$\frac{1.4 \times 10^4}{3.3 \times 10^8}$	
	47 Pu-239	5. 8×10 ³	$\frac{3.3 \times 10^{6}}{7.2 \times 10^{6}}$	
	48 Pu-240	$\frac{3.5 \times 10^{-1}}{3.0 \times 10^{-3}}$	1.4×10^{7}	
	49 P u - 2 4 1 50 P u - 2 4 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1.1 \times 10^9}{1.8 \times 10^5}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. 3×10 ⁻⁴	$\frac{1.8 \times 10}{1.2 \times 10^8}$	
	$\overline{52}$ $\overline{Am-242m}$	5.7×10^{-10}	3.3×10^{5}	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{5.7 \times 10^{-16}}{4.7 \times 10^{-10}}$	5. 0×10 ⁶ 2. 8×10 ⁵	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$\frac{2.8 \times 10^{-9}}{1.4 \times 10^{-9}}$	
	(注) 2027 年 4 月 1 日時点	· — —		
	(II) 2021 471 I H 101W	<u>`</u>		
注: 下線及び点線枠は 変更簡所を示すものであり変更事項に含まない	1			

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前			,	変更後			備考
		<u>第 4.</u>	・原子炉領域周辺設備解体撤				
	対象物		解体工	<u>法</u>	<u>飛散率**</u> f _s (%)	<u>欠損割合</u> f _L (%)	去期間の廃止措置計画の具 体化に伴う変更
	二次的な汚染		気中機械的	内切断	<u>30</u>	7.5	
	によるもの	 	気中熱的場	<u> </u>	<u>70</u>	<u>7.5</u>	
	 <u>放射化汚染に</u>		気中機械的	内切断	2.5	7.5	
	よるもの		気中熱的生	<u> </u>	<u>11</u>	<u>7.5</u>	
	※:出典 電中	研ハンド	<u>ブック</u>				
	第498基 約	息量証価に	田いる相対	線畳(D)	/Q) 及び相対激	事庁	
	'	(χ/Q)	- /用 (* 〇 /旧 /N) -			_	
		<u>実効放出</u> 継続時間	放出高さ	$\frac{\chi/Q}{(s/m^3)}$			
	<u>建家排気</u> フィルタの <u>破損</u>	1時間	地上放出	1.1×10	$\frac{-4}{1.8 \times 10^{-1}}$	<u>SSW</u>	
注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。							

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		変更後		備考
	第 4. 2. 9 表	亥種 i のγ線実効エネル		・原子炉領域周辺設備解体撤
	パラメータ	<u>核種</u>	<u>実効エネルギ*</u> <u>(MeV)</u>	去期間の廃止措置計画の具 体化に伴う変更
	E _i 核種 i の γ 線実効エネル	<u>Co-60</u>	2. 50	
	E _i 核種 i の γ 線実効エネル	<u>N b − 9 4</u>	<u>1. 56</u>	
	※:出典 電中研ハンドブック			
	第 4. 2. 10 表 核種 i 🗸)呼吸摂取による実効緩 「		
	パラメータ	<u>核種</u>	<u>実効線量換算係数**</u> (Sv/Bq)	
		<u>C o - 6 0</u>	8.6×10 ⁻⁸	
		<u>Ni-63</u>	4. 3×10 ⁻⁹	
	日	<u>Pu-238</u>	1.9×10 ⁻⁴	
		<u>Am-241</u>	1.8×10 ⁻⁴	
		<u>C m - 2 4 4</u>	1.3×10^{-4}	
	※:出典 電中研ハンドブック			

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

添付書類五 核燃料物質による汚染の分布とその評価方法に関する説明 書

核燃料物質による汚染の分布とその評価方法に関する説明書の記述の一部を、伊方発電所1号炉の廃止措置計画変更認可申請書変更前後 比較表の変更後欄のとおり変更する。

変更前	変更後	備考
添付書類五 核燃料物質による汚染の分布とその評価方法に関する説明書 1. 汚染の分布の評価 解体対象施設の汚染分布は、加圧水型原子炉施設のモデルプラントにおける評価結果を基に推定している。今後、解体工事準備期間に実施する汚染状況の調査結果を踏まえた評価の見直しを行い、廃止措置計画に反映し変更の認可を受ける。	添付書類五 核燃料物質による汚染の分布とその評価方法に関する説明書	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具 体化に伴う変更
2. 現状の評価 現状の評価は、加圧水型原子炉施設のモデルプラントにおける評価結果 を基に、主要な設備の放射能レベルを推定し、放射能レベル区分別の放射 性廃棄物発生量を評価している。評価の前提条件を以下に示す。 ・定格負荷相当年数30年(運転期間40年、稼働率75%) ・原子炉停止後の安全貯蔵期間6年(準備期間1年+安全貯蔵期間5年) ・二次的な汚染を生じている設備の解体前除染による除染効果(除染係 数30) ・二次的な汚染を生じている設備の解体後除染による除染効果(除染係 数100)	る評価結果を基に、主要な設備の放射能レベルを推定し、放射能レベル区 分別の放射性廃棄物発生量を評価している。評価の前提条件を以下に示す。 ・定格負荷相当年数30年(運転期間40年、稼働率75%) ・原子炉停止後の安全貯蔵期間6年(準備期間1年+安全貯蔵期間5年) ・二次的な汚染を生じている設備の解体前除染による除染効果(除染係 数30)	・記載の適正化 (評価時期の明確化)
上記の条件による主な廃止措置対象施設の推定汚染分布を第5. <u>2</u> . 1図, 放射能レベル区分別の廃止措置期間中の放射性固体廃棄物の推定発生量を第5. <u>2</u> . 1表に示す。	を第5. <u>1</u> .1表に示す。 <u>ただし</u> ,第5.1.1表の推定発生量については,2号炉 の廃止等に伴い見直した値(令和2年10月7日廃止措置計画変更認可)を 示す。	・記載の適正化 (図番号の繰り上げ) ・記載の適正化 (表番号の繰り上げ) ・記載の適正化
また、伊方発電所に貯蔵・保管している原子炉運転中に発生した放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第5.2.2表に示す。	また,伊方発電所に貯蔵・保管している原子炉運転中に発生した放射性固体廃棄物の貯蔵・保管場所ごとの種類及び数量を第5.1.2表に示す。	(評価時期の明確化) ・記載の適正化 (表番号の繰り上げ)

伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表 変更前 変更後 考 3. 今後の評価 • 原子炉領域周辺設備解体撤 2. 汚染状況の調査 放射線業務従事者及び周辺公衆の被ばくを低減することを目的に、適切 放射線業務従事者及び周辺公衆の被ばくを低減することを目的に、適切 去期間の廃止措置計画の具 な解体撤去工法及びその手順を策定するため並びに解体撤去工事に伴っ な解体撤去工法及びその手順を策定するため並びに解体撤去工事に伴っ 体化に伴う変更 て発生する放射性物質発生量の評価精度の向上を図るため、解体対象施設 て発生する放射性物質発生量の評価精度の向上を図るため、解体対象施設 に残存する放射性物質について, 核種組成, 放射能濃度及び分布を評価す に残存する放射性物質について、核種組成、放射能濃度及び分布を評価す 解体対象施設に残存する放射性物質は,原子炉運転中の中性子照射によ 解体対象施設に残存する放射性物質は、原子炉運転中の中性子照射によ り炉心部等の構造材が放射化して生成される放射化汚染及び1次冷却材 り炉心部等の構造材が放射化して生成される放射化汚染及び1次冷却材 中の腐食生成物が炉心部で放射化され、機器及び配管の内面に付着して残 中の腐食生成物が炉心部で放射化され、機器及び配管の内面に付着し残存 ・記載の適正化 存する二次的な汚染に区分して評価する。 する二次的な汚染に区分して2027年4月1日時点の放射能量で評価する。 (表現の統一) 評価対象核種は、第5.2.1表に示す55核種とする。 • 原子炉領域周辺設備解体撤 放射能レベル区分別の放射性固体廃棄物の推定発生量は、解体対象施設 去期間の廃止措置計画の具 に残存する放射性物質の核種組成、放射能濃度及び分布の評価結果を基 体化に伴う変更 に、設計情報及び現地調査により設定した各設備の物量により評価する。 2.1 放射化汚染の評価 放射化汚染は、放射化されたものに関して、生成核種を同定するととも 放射化汚染は、放射化されたものに関して、生成核種を同定するとと に、生成核種の放射能濃度分布を、計算による方法及び測定による方法に もに、生成核種の放射能濃度分布を、計算による方法及び測定による方 よって評価する。 法によって評価する。 計算による方法としては、発電用原子炉施設の運転履歴(中性子線の照 計算による方法としては、発電用原子炉施設の運転履歴(中性子線の 射履歴)や設計情報(建家図面等の位置情報、機器、配管及び材料情報) 照射履歴) や設計情報(建家図面等の位置情報,機器,配管及び材料情 により、計算コードを用いて評価する。 報)により、計算コードを用いて評価する。 測定による方法としては、解体対象施設から採取した代表試料を分析し 測定による方法としては、解体対象施設から採取した代表試料を分析 て,放射化生成核種を同定するとともに、生成核種の放射能濃度を求める。 して、放射化生成核種を同定するとともに、生成核種の放射能濃度を求 める。 なお、試料の採取に当たっては、金属の部位からは遠隔操作等により. なお、試料の採取に当たっては、金属の部位からは遠隔操作等により、 コンクリートの部位からはコアボーリング等により試料を採取する。 コンクリートの部位からはコアボーリング等により試料を採取する。 放射化汚染の評価方法を第5.2.1図に示す。 解体対象施設の放射化汚染による核種別の放射能量を第5.2.2表に示

変更前	変更後	備考
二次的な汚染は、配管及び機器の外部からy線の測定を行うとともに、 施設を構成する配管及び機器の材料組成を考慮して腐食生成物中の核種 組成比を計算又は測定により評価する。 計算による方法としては、1次冷却材中の放射能濃度と表面密度から1 次冷却材に接液する配管及び機器の接液面の沈着及び剥離の挙動モデル を用いて評価する。	2.2 二次的な汚染の評価 二次的な汚染は、機器及び配管外部からγ線を測定し、内面に付着している主要な汚染は種であるСο-60の表面汚染密度を求め、機器及び配管の内表面積を乗じて、Со-60との核種組成比法や平均放射能機度法を用いて機器及び配管等に付着した放射能量を評価する。 二次的な汚染の評価方法を第5.2.2図に示す。 解体対象施設の二次的な汚染による核種別の放射能量を第5.2.3表に示す。 3. 汚染の分布 放射化汚染及び二次的な汚染の評価結果による、主な廃止措置対象施設の推定汚染分布を第5.3.1図に示す。 4. 放射性固体廃棄物の推定発生量の評価 「2.1 放射化汚染の評価」及び「2.2 二次的な汚染の評価」を用いて評価した、放射能レベル区分別の放射性固体廃棄物の推定発生量を第5.4.1表に示す。	・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

	変更前			変更後	備考	
<u> </u>	第 5. <u>2</u> . 1 表 廃止措置期間中の放射性固体廃棄		5	第5. <u>1</u> .1表 廃止措置期間中の放射性固体廃棄 (令和2年10月7日廃止措置計画	・記載の適正化 (表番号の繰り上げ)	
		(単位: t)			(単位: t)	・記載の適正化 (評価時期の明確化)
	放射能レベル区分*1	推定発生量**2		放射能レベル区分*1	推定発生量※2	(日下 四下寸 分] マノウ] 7年 口 /
低レベ	放射能レベルの比較的高いもの(L 1)	約 90	低レベ	放射能レベルの比較的高いもの(L 1)	約 90	
ル 放 射 性	放射能レベルの比較的低いもの(L2)	約 880	ル 放射 性	放射能レベルの比較的低いもの(L2)	約 880	
廃 棄物	放射能レベルの極めて低いもの(L3)	約 2,070	性廃棄物	放射能レベルの極めて低いもの(L3)	約 2, 070	
7	放射性物質として扱う必要のないもの	約 39,000	, t	放射性物質として扱う必要のないもの	約 39,000	
	合計*3	約 42,000		合計 ^{※3}	約 42,000	
**2:推 **3:そ	射能レベル区分値は、次のと分質は、次の区分値は、次の区分値は、「原子炉等規制法施 していて分値の上限は、「原子炉等規制法施 したしてのでは、、国内で操業を したいで、国内で操業を したいで、国内で操業を には、国内で操業のので、国内で操業のので、国内ののでのでは、。 のので、日本ののので、日のでは、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本のので、日本ので、日本	いるためでは、100 いるでは、100 かのでは、100 がでは、100 がでは、100 がでは、100 がでは、100 がでは、100 がでは、100 がでは、100 がでは、100 がの発生分 がの発生分 がの発生分 がの発生分	※1:放射能レベル区分値は、次のとおり。 ・L1の区分値の上限は、「原子炉等規制法施行る放射能濃度。 ・L1とL2の区分値は、国内で操業されていト埋設施設の埋設許可条件と同等規制法施令第324号。ただし、平成19年好命設等規制法施令第31条第1項に定棄されるので関連といる。上ので対する。と対するでは、10の区分間は、10は単位でが対対性物質として扱うのに関する規則」第2度。 ※2:推定発生量は、次のとおり。・低レベル放射性廃棄物については、10は単位を、対射性物質として扱う必要のないもの及び行きに対する。・が対性物質として扱う必要のないもの及び行きに対する。・が対性を変更のないもの及び行きに対すが対対性を変更のないもの及び行きに対すが対対性を変更のないもの及び行きに対して、10は単位でが対対性を変更のないもの及び行きに対対が対対性を変更のないとがある。・対対性物質として扱う必要のないもの及び行きに対対が対対性を変更のないもの及び行きに対対が対対性を変更のないもの及び行きに対対が対対が対対が対対が対対が対対が対対が対対が対対が対対が対対が対対が対対が		いおきでは、 かりの がは、 がいたできる。 がいたできる。 がいたが、 がいが、 がいがが、 がいが、 がいが	

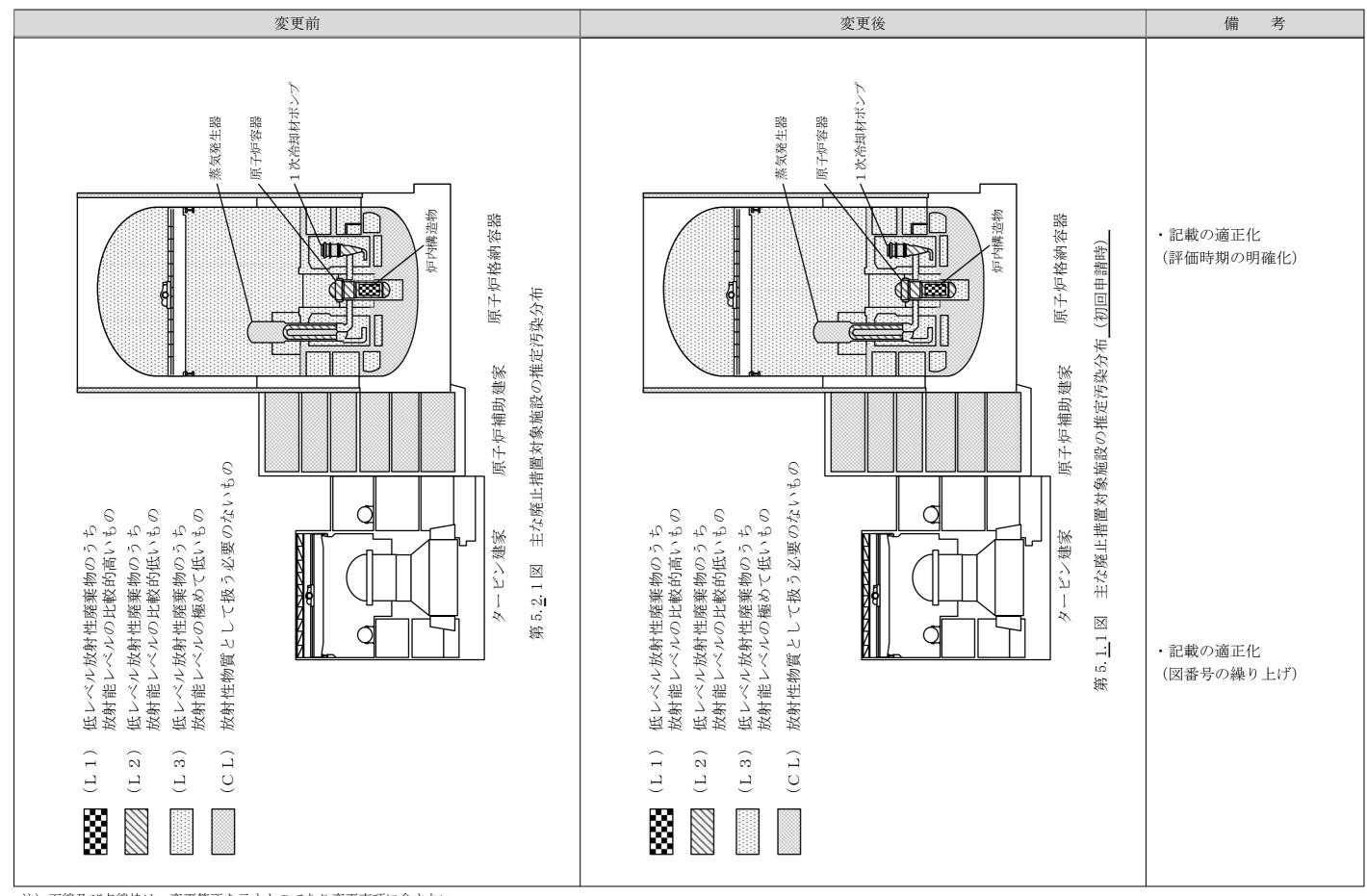
注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

	変更	更前			変更後		備考
第 5. <u>2</u> . 2 表 放射性固	体廃棄物の原		の種類及び数量 成 28 年 9 月末現在)	第 5. <u>1</u> . 2 表 放射性固	体廃棄物の貯蔵・保管場所ごと (平)	の種類及び数量 成 28 年 9 月末現在)	・記載の適正化 (表番号の繰り上げ)
貯蔵・保管場所		種類	数量	貯蔵・保管場所	種類	数量	
使用済樹脂貯蔵タンク	脱塩塔使月	月済樹脂	174 m ^{3*1}	使用済樹脂貯蔵タンク	脱塩塔使用済樹脂	174 m ^{3*1}	
	使用済制御	甲棒	89 体		使用済制御棒	89 体	
使用済燃料貯蔵設備	使用済バー	ーナブルポイズン	246 体	使用済燃料貯蔵設備	使用済バーナブルポイズン	246 体	
	使用済プラ	ラギングデバイス	174 体		使用済プラギングデバイス	174 体	
	10-14	均質固化体	494 本		均質固化体	494 本	
固体廃棄物貯蔵庫	ドラム缶	+//- T	6,070 本	固体廃棄物貯蔵庫	ドラム缶 ***ロル	6,070 本	
	その他	一雑固体	2,851 本**2		その他雑固体	2,851 本**2	
++ +- 70, 11 BB /B //* ++	蒸気発生器	岩	2 基	## F- 30, 1	蒸気発生器	2 基	
蒸気発生器保管庫	保管容器		298 m ^{3*3}	蒸気発生器保管庫 保管容器 298 m	298 m³*³		
※1:2号及び3号炉で発 ※2:2000ドラム缶相当で ※3:原子炉容器上部ふた	での保管数量	である。		※1:2号及び3号炉で発※2:2000ドラム缶相当で※3:原子炉容器上部ふた	での保管数量である。		

変更前				備考		
		第 5.2	2.1表 評価対象	泉核種		•原子炉領域周辺設備解体撤
		評価	対象核種(55 核	種)_		去期間の廃止措置計画の具 体化に伴う変更
	<u>H-3</u>	<u>Be-10</u>	<u>C-14</u>	<u>S-35</u>	<u>C1-36</u>	11 13 - 11 7 200
	<u>C a - 4 1</u>	Mn-54	<u>Fe-55</u>	<u>Fe-59</u>	<u>Co-58</u>	
	<u>Co-60</u>	<u>Ni-59</u>	<u>Ni−63</u>	Zn-65	<u>Se-79</u>	
	<u>Sr-90</u>	<u>Z r – 9 3</u>	<u>Nb-94</u>	Mo-93	<u>T c - 9 9</u>	
	<u>Ru-106</u>	<u>Ag-108m</u>	<u>Cd-113m</u>	<u>Sn-126</u>	Sb-125	
	<u>Te-125m</u>	<u>I-129</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ba-133</u>	
	<u>La-137</u>	<u>Ce-144</u>	Pm-147	Sm-151	Eu-152	
	<u>Eu-154</u>	<u>Ho-166m</u>	<u>Lu-176</u>	<u>Ir-192m</u>	Pt-193	
	<u>U-234</u>	<u>U-235</u>	<u>U-236</u>	<u>U-238</u>	Np-237	
	Pu-238	Pu-239	Pu-240	Pu-241	Pu-242	
	Am-241	Am-242m	Am-243	Cm-242	Cm-244	
(注) ア始リッド 佐切っ 本事禁電き こよさのできり 本事事では会よよい。						

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

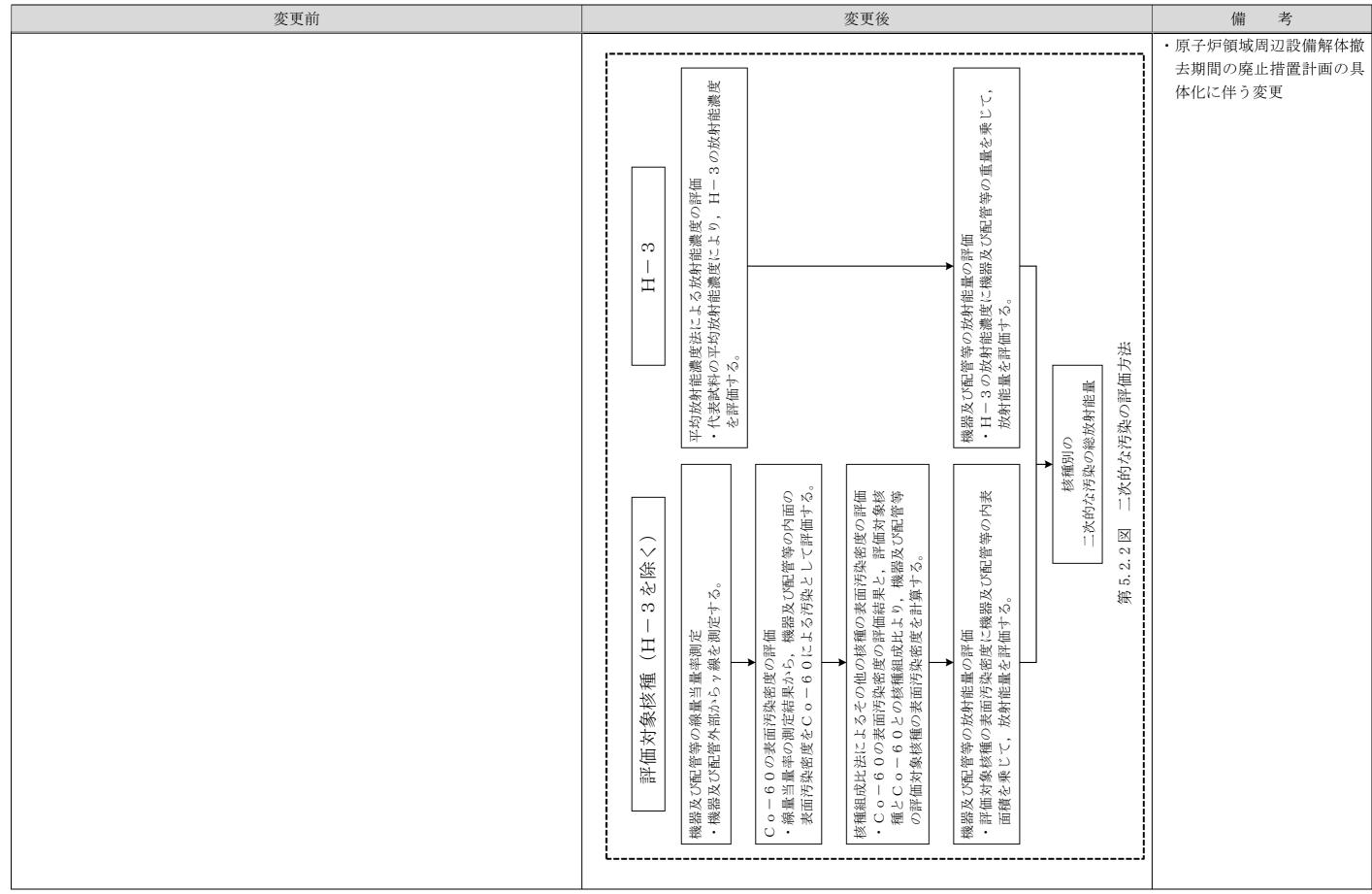
変更前	変更後	備 考
	第5.2.2表 放射化汚染の推定放射能量	·原子炉領域周辺設備解体撤
		去期間の廃止措置計画の具
	評価対象核種 放射化汚染	体化に伴う変更
	$\frac{1}{2}$ $\frac{H-3}{2}$ $\frac{4.7 \times 10^{14}}{2.0 \times 10^{16}}$	体化に任う変更
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{5}{100} \frac{1}{100} \frac{1}$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	9 Fe - 5 9 1.2×10^7	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	13 N i -6.3 $1.1 \times 10^{1.5}$	
	$\frac{14}{15}$ $\frac{Z \text{ n} - 6.5}{2.0}$ $\frac{1.3 \times 10^{7}}{1.0 \times 10^{8}}$	
	$\begin{array}{ c c c c c c }\hline 15 & Se - 79 & 1.9 \times 10^8 \\\hline 16 & Sr - 90 & 1.4 \times 10^9 \\\hline \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$18 Nb - 94 \qquad 1.4 \times 10^{10}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	22 A g - 1 0 8 m 2.5×10^{11}	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$26 T = -1.2.5 \text{ m} 7.0 \times 10^{1.0}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	30 B a - 1 3 3 1.6×10^{10}	
	$\frac{31}{200}$ $\frac{L}{100}$ $\frac{1.1 \times 10^6}{1.000}$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	39 I $r - 1 9 2 m$ 2. 1×10^{10}	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{43}$ U - 2 3 6 $\frac{3.0 \times 10^3}{}$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	47 P u - 2 3 9 1.8×10 ⁸	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	51 Am -241 2.3×10^8	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(注) 2027 年 4 月 1 日時点	
	<u> </u>	
注)下線及び占線枠は - 亦再第正を示すたのでなり亦再車項に今まない		

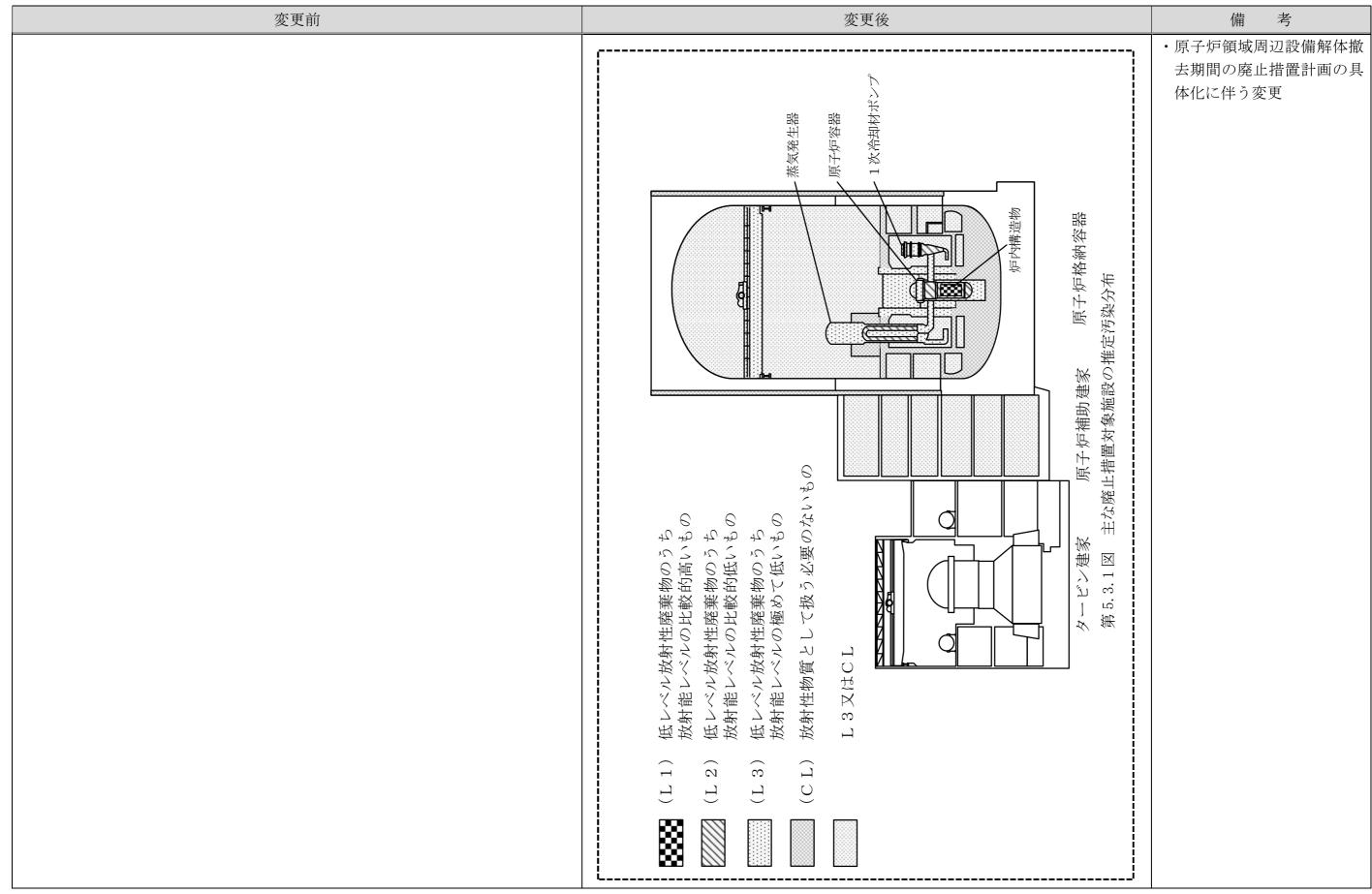

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
	第5.2.3 表 二次的な汚染の推定放射能量	·原子炉領域周辺設備解体撤
		去期間の廃止措置計画の具
	評価対象核種ニンの一二次的な汚染	体化に伴う変更
	$\frac{1}{3}$ $\frac{H-3}{3}$ $\frac{3.5 \times 10^9}{3.00 \times 10^5}$	体化に仕り変文
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{4}{100} = \frac{100}{100} = $	
	$\frac{5}{3}$ C 1 - 3 6 $\frac{5.7 \times 10^7}{1.00 \times 10^6}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{9}{10}$ F e $-\frac{5}{9}$ 0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	13 N i -6.3 $6.9 \times 10^{1.2}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$17 Z r - 9 3 9.4 \times 10^4$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	21 R u – 1 0 6 1.6×10^4	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{26}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	30 B a -1 3 3 5.6×10^8	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$34 \text{Sm} - 151 2.6 \times 10^8$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	1.6×10^{1}	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{42}{U-2 \ 3 \ 5} \frac{U-2 \ 3 \ 5}{3.9 \times 10^2}$	
	$\begin{array}{ c c c c c c c c c }\hline 43 & U-2 & 3 & 6 & 9.0 \times 10^3 \\\hline 44 & U-2 & 3 & 8 & 1.3 \times 10^4 \\\hline \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{46}$ $P u - 2 3 8$ $\frac{7.0 \times 10^8}{}$	
	$\begin{array}{ c c c c c c c c c }\hline 47 & Pu-239 & 1.6\times10^7 \\\hline 48 & Pu-240 & 3.0\times10^7 \\\hline \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\overline{50}$ $P u - 2 4 2$ $\overline{3.9 \times 10^5}$	
	$\begin{array}{ c c c c c c c c c }\hline 51 & Am-2 & 4 & 1 & 2.6 \times 10^8 \\ \hline 52 & Am-2 & 4 & 2m & 7.2 \times 10^5 \\ \hline \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{54}{100} = \frac{100}{100} = \frac$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(注) 2027 年 4 月 1 日時点	
(人) 工道サッドと道地は、赤田原正とこれもの本とり赤田東西に入れない。		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

変更前		変更後	備考	
	5		物の推定 <u>発生量</u> _(単位: t)_	・原子炉領域周辺設備解体撤 去期間の廃止措置計画の具
		放射能レベル区分*1	推定発生量※2	体化に伴う変更
	低レ	放射能レベルの比較的高いもの(L1)	<u>約 70</u>	
	廃べ乗が放	放射能レベルの比較的低いもの(L2)	<u>約 460</u>	
	射性	放射能レベルの極めて低いもの(L3)	<u>約 6, 030</u>	
	放射性	生物質として扱う必要のないもの(CL)	<u>約 21, 900</u>	
		<u>合計^{**3}</u>	<u>約 28, 500</u>	
	**2:推注 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	染された物の第二種廃棄物埋設の事業に関定める放射能濃度の10分の1。 L2とL3の区分値は、「核燃料物質又は染された物の第二種廃棄物埋設の事業に関定める放射能濃度の10分の1。 L3とCLの区分値は、「工場等においてに含まれる放射性物質の放射能濃度が放射ための措置を必要としないものであることの表第1欄の33種類の放射性物質のうちの表第1欄の33種類の放射性物質のうちび選定した放射性物質(核種)(旧重要1054, Co-60, Sr-90, Cs-1Eu-152, Eu-154, Pu-23の放射能濃度を、別表第2欄の放射能濃度として1.0。定発生量は、次のとおり。 こ次的な汚染を生じている設備の一部(タールでは、除染効果(除染係数100)を関係でいては、除染効果(除染係数100)を関係があたのでは、100 t 単位で切りに変更によりが対射性廃棄物を含まない。の他、放射性廃棄物でない廃棄物(NR)分を含む。)が約195,000 t 発生する(1,00 t 発生する)が約195,000 t 発生する(1,00 t 発生を発生をといるは 1,00 t 発生を発生を発生をといるは 1,00 t 発生を発生をといるは 1,00 t 発生を発生を発生をといるは 1,00 t 発生を発生を発生を使用を発生をといるは 1,00 t 発生を発生を発生を発生を発生を発生を発生を発生を発生を発生を発生を発生を発生を発	核燃料物質によって汚 する規則」別表第1に 核燃料物質によって汚 する規則」別表第2に 用いた資材その他の物 線による障害の防止の の確認等に関する規則」 「原子力安全委員会 核種(H-3, Mn- 34, Cs-137, 9及びAm-241)) で除した割合の合計値 ンク,配管等の形状) 見込んでいる。 位で切り上げた値である。 したばた値である。 のとはな外からの発	


注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。


注) 下線及び点線枠は,変更箇所を示すものであり変更事項に含まない。

変更前	変更後	備 考
対)下鎖取で内線がは、水面線面を示すえのでもり水面裏(E)。今まわし)	中性子東分布の計算 ・幾何形状のモデル化 ・運転実績による出力分布の反映 ・二次元輸送計算コード DORTver.3.2にで計算 放射能濃度分布の計算 ・代表試料による元素組成の見直し ・運転実績による照射及び冷却条件の設定 ・放射性核種生成崩壊計算コード ORIGEN-2.1にで計算 第5.2.1図 放射化汚染の評価方法	・原子炉領域周辺設備解体撤去期間の廃止措置計画の具体化に伴う変更

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

注) 下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

添付書類六 性能維持施設及びその性能並びにその性能を維持すべき期間に関する説明書

性能維持施設及びその性能並びにその性能を維持すべき期間に関する説明書の記述の一部を、伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

変更前	変更後	備考
	添付書類六 性能維持施設及びその性能並びにその性能を維持すべき期間に関	
する説明書	する説明書	
3. 性能維持施設の機能及びその性能	3. 性能維持施設の機能及びその性能	
(5) 解体中に必要なその他の施設	(5) 解体中に必要なその他の施設	
a. 換気設備	a. 換気設備	
廃止措置期間中は,使用済燃料の貯蔵管理及び搬出作業,放射性廃	廃止措置期間中は,使用済燃料の貯蔵管理及び搬出作業,放射性廃	
棄物の処理, <u>放射性粉じん</u> 発生の可能性がある解体作業等において,	棄物の処理, <u>粒子状物質</u> 発生の可能性がある解体作業等において,空	・記載の適正化
空気浄化が必要となる可能性があるため,「換気機能」を有する設備		(略称の反映)
を維持管理する。換気設備の機能及び性能維持施設を第 6.3.9 表に示	維持管理する。換気設備の機能及び性能維持施設を第6.3.9表に示す。	
す。		
注)下線及び占線枠は、亦再签正を示すものでありが再車項に今まわい。		

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。

添付書類七 廃止措置に要する費用の見積り及びその資金の調達計画に 関する説明書

廃止措置に要する費用の見積り及びその資金の調達計画に関する説明書の記述の一部を,伊方発電所1号炉の廃止措置計画変更認可申請書変更前後比較表の変更後欄のとおり変更する。

添付書類七 廃止措置に要する費用の見積り及びその資金の調達計画に関する 説明書

変更前

1. 廃止措置に要する費用

1号炉の原子力発電施設解体引当金制度に基づく原子力発電施設の解体に要する総見積総額(平成30年9月末現在)は第7.1.1表に示すとおり、約396億円である。

2. 資金調達計画

廃止措置に要する費用<u>は、全額自己資金により賄う。なお、1号炉の</u>原子力発電施設解体引当金制度による原子力発電施設解体引当金累積積立額(令和元年度末現在)は、約375億円である。

<u>今後、原子力発電施設解体引当金制度による積立期間において、総見</u> 積額の全額を積み立てる計画である。

第7.1.1表 原子力発電施設の解体に要する総見積額

(平成30年9月末現在)

<u>項 目</u>	見積額
施設解体費	約292億円
解体廃棄物処理処分費	約104億円
<u>合 計</u>	約396億円

添付書類七 廃止措置に要する費用の見積り及びその資金の調達計画に関する 説明書

変更後

考

· 原子力発電施設解体引当金

制度の廃止に伴う見直し

1. 廃止措置に要する費用

「原子力発電における使用済燃料の再処理等の実施及び廃炉の推進に 関する法律」に基づき、使用済燃料再処理・廃炉推進機構(以下「機 構」という。)が、廃炉推進業務に必要な費用を当社の廃止措置に要する 費用を含めて算定する。

なお、原子力発電施設解体引当金制度(令和6年4月1日に廃止)に 基づいて当社が算定していた原子力発電施設解体に要する費用の総見積 額は、令和5年度末時点において、伊方発電所1号炉で約396億円であ る。

2. 資金調達計画

廃止措置に要する費用<u>に相当する額が、各年度、機構から当社に支払</u>われる。

なお,当社は機構の廃炉推進業務に必要な費用に相当する額を,各年 度,機構に対して廃炉拠出金として納付する。

注)下線及び点線枠は、変更箇所を示すものであり変更事項に含まない。